skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Slowing the body slows down time perception
Interval timing is a fundamental component of action and is susceptible to motor-related temporal distortions. Previous studies have shown that concurrent movement biases temporal estimates, but have primarily considered self-modulated movement only. However, real-world encounters often include situations in which movement is restricted or perturbed by environmental factors. In the following experiments, we introduced viscous movement environments to externally modulate movement and investigated the resulting effects on temporal perception. In two separate tasks, participants timed auditory intervals while moving a robotic arm that randomly applied four levels of viscosity. Results demonstrated that higher viscosity led to shorter perceived durations. Using a drift-diffusion model and a Bayesian observer model, we confirmed these biasing effects arose from perceptual mechanisms, instead of biases in decision making. These findings suggest that environmental perturbations are an important factor in movement-related temporal distortions, and enhance the current understanding of the interactions of motor activity and cognitive processes.  more » « less
Award ID(s):
1849067
PAR ID:
10301758
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
eLife
Volume:
10
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Model misspecification is a common approach to model belief formation distortions. Misspecified models can be decomposed into two classes of distortions: prospective and retrospective biases (Bohren and Hauser 2023). Prospective biases correspond to distortions in forecasting future beliefs, while retrospective biases correspond to distortions in interpreting information ex post. We disentangle the impact of these two distortions on optimal lending contracts in the context of an entrepreneur who borrows to invest in a project. The entrepreneur learns about project quality from a signal, which she interprets with a misspecified model. A lender leverages each form of bias in distinct ways. 
    more » « less
  2. Latash, Mark L. (Ed.)
    This chapter reviews major principles of neural control of movement proposed by N. A. Bernstein based on his biomechanical studies of human movements and published in his 1947 book ‘On Construction of Movements’. These principles include the hierarchical organization of the motor control system; synergistic sensorimotor control; the principle of sensory corrections, and the principles of repetition without repetition and fixating and subsequent releasing kinematic degrees of freedom during motor skill acquisition. These principles simplify control of the musculoskeletal system with redundant degrees of freedom and unpredictable effects of reactive and muscle forces arising in multi-segment kinematic chains. We also discuss the relevant contemporary research that has been inspired by and further developed Bernstein’s ideas. We demonstrate, in particular, examples of complex muscle and kinematic synergies organized by different levels of the motor control system, consequences of loss of proprioceptive sensory corrections on movement coordination, and emergence of economical and stable kinematic and muscle invariant movement characteristics in the process of skill acquisition by trials and errors. We conclude this chapter with motor control related parables told by N. A. Bernstein to one of the authors (VMZ). 
    more » « less
  3. Abstract The motor cortex controls skilled arm movement by recruiting a variety of targets in the nervous system, and it is important to understand the emergent activity in these regions as refinement of a motor skill occurs. One fundamental projection of the motor cortex (M1) is to the cerebellum. However, the emergent activity in the motor cortex and the cerebellum that appears as a dexterous motor skill is consolidated is incompletely understood. Here, we report on low-frequency oscillatory (LFO) activity that emerges in cortico-cerebellar networks with learning the reach-to-grasp motor skill. We chronically recorded the motor and the cerebellar cortices in rats, which revealed the emergence of coordinated movement-related activity in the local-field potentials as the reaching skill consolidated. Interestingly, we found this emergent activity only in the rats that gained expertise in the task. We found that the local and cross-area spiking activity was coordinated with LFOs in proficient rats. Finally, we also found that these neural dynamics were more prominently expressed during accurate behavior in the M1. This work furthers our understanding on emergent dynamics in the cortico-cerebellar loop that underlie learning and execution of precise skilled movement. 
    more » « less
  4. Escorpizo, Reuben (Ed.)
    The rate of adjustment in a movement, driven by feedback error, is referred to as the adaptation rate, and the rate of recovery of a newly adapted movement to its unperturbed condition is called the de-adaptation rate. The rates of adaptation and de-adaptation are dependent on the training mechanism and intrinsic factors such as the participant's sensorimotor abilities. This study investigated the facilitation of the motor adaptation and de-adaptation processes for spatiotemporal features of an asymmetric gait pattern by sequentially applying split-belt treadmill (SBT) and asymmetric rhythmic auditory cueing (ARAC). Methods: Two sessions tested the individual gait characteristics of SBT and ARAC, and the remaining four sessions consisted of applying the two interventions sequentially during training. The adjustment process to the second intervention is referred to as “re-adaptation” and is driven by feedback error associated with the second intervention. Results: Ten healthy individuals participated in the randomized six-session trial. Spatiotemporal asymmetries during the adaptation and post-adaptation (when intervention is removed) stages were fitted into a two-component exponential model that reflects the explicit and implicit adaptation processes. A double component was shown to fit better than a single-component model. The decay constants of the model were indicative of the corresponding timescales and compared between trials. Results revealed that the explicit (fast) component of adaptation to ARAC was reduced for step length and step time when applied after SBT. Contrarily, the explicit component of adaptation to SBT was increased when it was applied after ARAC for step length. Additionally, the implicit (slow) component of adaptation to SBT was inhibited when applied incongruently after ARAC for step time. These outcomes show that the role of working motor memory as a translational tool between different gait interventions is dependent on (i) the adaptation mechanisms associated with the interventions, (ii) the targeted motor outcome of the interventions; the effects of factors (i) and (ii) are specific to the explicit and implicit components of the adaptation processes; these effects are unique to spatial and temporal gait characteristics. 
    more » « less
  5. Mogilner, Alexander (Ed.)
    Cellular cargoes, including lipid droplets and mitochondria, are transported along microtubules using molecular motors such as kinesins. Many experimental and computational studies focused on cargoes with rigidly attached motors, in contrast to many biological cargoes that have lipid surfaces that may allow surface mobility of motors. We extend a mechanochemical three-dimensional computational model by adding coupled-viscosity effects to compare different motor arrangements and mobilities. We show that organizational changes can optimize for different objectives: Cargoes with clustered motors are transported efficiently but are slow to bind to microtubules, whereas those with motors dispersed rigidly on their surface bind microtubules quickly but are transported inefficiently. Finally, cargoes with freely diffusing motors have both fast binding and efficient transport, although less efficient than clustered motors. These results suggest that experimentally observed changes in motor organization may be a control point for transport. 
    more » « less