skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Relationship Between Spatial Skills and Solving Problems in Engineering Mechanics
Spatial visualization is defined as the “process of apprehending, encoding, and mentally manipulating three-dimensional spatial forms.” Spatial cognition has been widely studied throughout psychology and education from more than 100 years. Engineering students and engineering professionals exhibit some of the highest levels of spatial skills compared to their counterparts in other majors/careers. Numerous studies have shown the link between spatial skills and success in engineering and interventions aimed at enhancing spatial skills have demonstrated a concomitant improvement in student success, as measured by grades earned and retention/graduation. The question remains: How do well-developed spatial skills contribute to engineering student success? One hypothesis is that spatial skills contribute to a student’s ability to solve unfamiliar problems. Recent studies have demonstrated that spatial skills contribute to success in solving problems from mathematics, chemical engineering, and electrical engineering. The study outlined in this paper, extends this work to examine the impact of spatial skills on the ability to solve problems from engineering mechanics. In this pilot study, a total of 47 students from upper division mechanical engineering courses completed a test of spatial skills and also were asked to solve 5-6 problems from introductory statics/physics. Results showed that a statistically significant positive correlation was found between spatial scores and the percent correct on the mechanics test. Individual problems were also examined to determine if spatial skills appeared to play a role in their solution. Some problems appeared to rely on spatial thinking; others did not. Results from this pilot study will be used to conduct an in-depth study examining the relationship between spatial skills and solving problems in engineering mechanics. This paper outlines key findings from this pilot study and makes recommendations for future work in this area.  more » « less
Award ID(s):
1818758
PAR ID:
10302004
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE annual conference proceedings
ISSN:
1524-4857
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Industry leaders rarely remark that the technical skills of engineering students are lacking; however, they frequently indicate that new engineers should be better prepared in communication skills, particularly written communication skills. In contrast, the visualization ability, or spatial skills, of engineering majors are typically excellent. Prior research has demonstrated that spatial ability is a significant predictor for graduating from STEM fields, particularly in engineering. This paper is part of a larger project that is exploring whether these two phenomena – poor written communication skills and well-developed spatial skills – are linked. In other words, is there a negative correlation between these two types of skills for engineering students? Data for this study was collected from first-year engineering students at a large university in the U.S. An online survey was administered that consisted of two validated spatial visualization tests, a verbal analogy task, and questions regarding students’ self-perceived communication ability. Student scores on spatial visualization tests and a verbal analogy task were compared between student groups and students’ perceived ability to communicate. Results identified statistically significant differences in test scores between domestic and international male students on all three tests. Interestingly, no gender-based differences were observed in spatial skills. Results from this study will contribute to future exploration of the link between spatial and technical communication skills. Results can also help inform the development of an intervention aimed at improving the written technical communication skills of our engineering students by helping them learn to write about spatial phenomena. 
    more » « less
  2. Practice plays a critical role in learning engineering dynamics. Typical practice in a dynamics course involves solving textbook problems. These problems can impose great cognitive load on underprepared students because they have not mastered constituent knowledge and skills required for solving whole problems. For these students, learning can be improved by being engaged in deliberate practice. Deliberate practice refers to a type of practice aimed at improving specific constituent knowledge or skills. Compared to solving whole problems requiring the simultaneous use of multiple constituent skills, deliberate practice is usually focused on one component skill at a time, which results in less cognitive load and more specificity. Contemporary theories of expertise development have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and various professional fields. Concurrently, there is an emerging method for improving learning efficiency of novices by combining deliberate practice with cognitive load theory (CLT), a cognitive-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those that receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course), and students are more likely to leave engineering after taking mechanics courses. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. The goal of the present study is to develop deliberate practice techniques to improve learning effectiveness and to reduce cognitive load. Our pilot study results revealed that the student mental effort scores were negatively correlated with their knowledge test scores with r = -.29 (p < .05) after using deliberate practice strategies. This supports the claim that deliberate practice can improve student learning while reducing cognitive load. In addition, the higher the students’ knowledge test scores, the lower their mental effort was when taking the tests. In other words, the students who used deliberate practice strategies had better learning results with less cognitive load. To design deliberate practice, we often need to analyze students’ persistent problems caused by faulty mental models, also referred to as an intuitive mental model, and misconceptions. In this study, we continue to conduct an in-depth diagnostic process to identify students’ common mistakes and associated intuitive mental models. We then use the results to develop deliberate practice problems aimed at changing students’ cognitive strategies and mental models. 
    more » « less
  3. Practice plays a critical role in learning engineering dynamics. Typical practice in a dynamics course involves solving textbook problems. These problems can impose great cognitive load on underprepared students because they have not mastered constituent knowledge and skills required for solving whole problems. For these students, learning can be improved by being engaged in deliberate practice. Deliberate practice refers to a type of practice aimed at improving specific constituent knowledge or skills. Compared to solving whole problems requiring the simultaneous use of multiple constituent skills, deliberate practice is usually focused on one component skill at a time, which results in less cognitive load and more specificity. Contemporary theories of expertise development have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and various professional fields. Concurrently, there is an emerging method for improving learning efficiency of novices by combining deliberate practice with cognitive load theory (CLT), a cognitive-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those that receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course), and students are more likely to leave engineering after taking mechanics courses. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. The goal of the present study is to develop deliberate practice techniques to improve learning effectiveness and to reduce cognitive load. Our pilot study results revealed that the student mental effort scores were negatively correlated with their knowledge test scores with r = -.29 (p < .05) after using deliberate practice strategies. This supports the claim that deliberate practice can improve student learning while reducing cognitive load. In addition, the higher the students’ knowledge test scores, the lower their mental effort was when taking the tests. In other words, the students who used deliberate practice strategies had better learning results with less cognitive load. To design deliberate practice, we often need to analyze students’ persistent problems caused by faulty mental models, also referred to as an intuitive mental model, and misconceptions. In this study, we continue to conduct an in-depth diagnostic process to identify students’ common mistakes and associated intuitive mental models. We then use the results to develop deliberate practice problems aimed at changing students’ cognitive strategies and mental models. 
    more » « less
  4. A growing body of research indicates spatial visualization skills are important to success in many STEM disciplines, including several engineering majors that rely on a foundation in engineering mechanics. Many fundamental mechanics concepts such as free-body diagrams, moments, and vectors are inherently spatial in that application of the concept and related analytical techniques requires visualization and sketching. Visualization may also be important to mechanics learners’ ability to understand and employ common mechanics representations and conventions in communication and problem solving, a skill known as representational competence. In this paper, we present early research on how spatial abilities might factor in to students’ conceptual understanding of vectors and associated representational competence. We administered the Mental Cutting Test (MCT), a common assessment of spatial abilities, in the first and last week of the term. We also administered the Test of Representational Competence with Vectors (TRCV), a targeted assessment of vector concepts and representations, in week one and at mid-term. The vector post-test came after coverage of moments and cross products. We collected this assessment data in statics courses across multiple terms at three different colleges. To understand how spatial skills relate to the development of representational competence, we use a multiple regression model to predict TRCV scores using the pre-class MCT scores as well as other measures of student preparation in the form of grades in prerequisite math and physics coursework. We then extend the analysis to consider both MCT and TRCV scores as predictors for student performance on the Concept Assessment Test in Statics. We find that spatial abilities are a factor in students’ development of representational competence with vectors. We also find that representational competence with vectors likely mediates the importance of spatial abilities to student success in developing broader conceptual understanding in statics. We conclude by discussing implications for mechanics instruction. 
    more » « less
  5. null (Ed.)
    A growing body of research indicates spatial visualization skills are important to success in many STEM disciplines, including several engineering majors that rely on a foundation in engineering mechanics. Many fundamental mechanics concepts such as free-body diagrams, moments, and vectors are inherently spatial in that application of the concept and related analytical techniques requires visualization and sketching. Visualization may also be important to mechanics learners’ ability to understand and employ common mechanics representations and conventions in communication and problem solving, a skill known as representational competence. In this paper, we present early research on how spatial abilities might factor in to students’ conceptual understanding of vectors and associated representational competence. We administered the Mental Cutting Test (MCT), a common assessment of spatial abilities, in the first and last week of the term. We also administered the Test of Representational Competence with Vectors (TRCV), a targeted assessment of vector concepts and representations, in week one and at mid-term. The vector post-test came after coverage of moments and cross products. We collected this assessment data in statics courses across multiple terms at three different colleges. To understand how spatial skills relate to the development of representational competence, we use a multiple regression model to predict TRCV scores using the pre-class MCT scores as well as other measures of student preparation in the form of grades in prerequisite math and physics coursework. We then extend the analysis to consider both MCT and TRCV scores as predictors for student performance on the Concept Assessment Test in Statics. We find that spatial abilities are a factor in students’ development of representational competence with vectors. We also find that representational competence with vectors likely mediates the importance of spatial abilities to student success in developing broader conceptual understanding in statics. We conclude by discussing implications for mechanics instruction. 
    more » « less