One of the main skills of engineers is to be able to solve problems. It is generally recognized that real-world engineering problems are inherently ill-structured in that they are complex, defined by non-engineering constraints, are missing information, and contain conflicting information. Therefore, it is very important to prepare future engineering students to be able to anticipate the occurrence of such problems, and to be prepared to solve them. However, most courses are taught by academic professors and lecturers whose focus is on didactic teaching of fundamental principles and code-based design approaches leading to predetermined “right” answers. Most classroom-taught methods tomore »
The Relationship Between Spatial Skills and Solving Problems in Engineering Mechanics
Spatial visualization is defined as the “process of apprehending, encoding, and mentally manipulating three-dimensional spatial forms.” Spatial cognition has been widely studied throughout psychology and education from more than 100 years. Engineering students and engineering professionals exhibit some of the highest levels of spatial skills compared to their counterparts in other majors/careers. Numerous studies have shown the link between spatial skills and success in engineering and interventions aimed at enhancing spatial skills have demonstrated a concomitant improvement in student success, as measured by grades earned and retention/graduation. The question remains: How do well-developed spatial skills contribute to engineering student success? One hypothesis is that spatial skills contribute to a student’s ability to solve unfamiliar problems. Recent studies have demonstrated that spatial skills contribute to success in solving problems from mathematics, chemical engineering, and electrical engineering. The study outlined in this paper, extends this work to examine the impact of spatial skills on the ability to solve problems from engineering mechanics. In this pilot study, a total of 47 students from upper division mechanical engineering courses completed a test of spatial skills and also were asked to solve 5-6 problems from introductory statics/physics. Results showed that a statistically significant positive correlation more »
- Award ID(s):
- 1818758
- Publication Date:
- NSF-PAR ID:
- 10302004
- Journal Name:
- ASEE annual conference proceedings
- ISSN:
- 1524-4857
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developedmore »
-
In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developedmore »
-
Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards ofmore »
-
This evidence-based practices paper discusses the method employed in validating the use of a project modified version of the PROCESS tool (Grigg, Van Dyken, Benson, & Morkos, 2013) for measuring student problem solving skills. The PROCESS tool allows raters to score students’ ability in the domains of Problem definition, Representing the problem, Organizing information, Calculations, Evaluating the solution, Solution communication, and Self-assessment. Specifically, this research compares student performance on solving traditional textbook problems with novel, student-generated learning activities (i.e. reverse engineering videos in order to then create their own homework problem and solution). The use of student-generated learning activities tomore »