skip to main content


Title: The Population Genetics, Virulence, and Public Health Concerns of Escherichia coli Collected From Rats Within an Urban Environment
The co-existence of rats and humans in urban environments has long been a cause for concern regarding human health because of the potential for rats to harbor and transmit disease-causing pathogens. Here, we analyze whole-genome sequence (WGS) data from 41 Escherichia coli isolates collected from rat feces from 12 locations within the city of Chicago, IL, United States to determine the potential for rats to serve as a reservoir for pathogenic E. coli and describe its population structure. We identified 25 different serotypes, none of which were isolated from strains containing significant virulence markers indicating the presence of Shiga toxin-producing and other disease-causing E . coli . Nor did the E. coli isolates harbor any particularly rare stress tolerant or antimicrobial resistance genes. We then compared the isolates against a public database of approximately 100,000 E. coli and Shigella isolates of primarily food, food facility, or clinical origin. We found that only one isolate was genetically similar to genome sequences in the database. Phylogenetic analyses showed that isolates cluster by serotype, and there was little geographic structure (e.g., isolation by distance) among isolates. However, a greater signal of isolation by distance was observed when we compared genetic and geographic distances among isolates of the same serotype. This suggests that E. coli serotypes are independent lineages and recombination between serotypes is rare.  more » « less
Award ID(s):
1923882
NSF-PAR ID:
10302046
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes.

    Results

    We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/μL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments.

    Conclusions

    DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.

     
    more » « less
  2. null (Ed.)
    Salmonella enterica is one of the most common bacterial foodborne pathogens in the United States, causing illnesses that range from self-limiting gastroenteritis to more severe, life threatening invasive disease. Many Salmonella strains contain plasmids that carry virulence, antimicrobial resistance, and/or transfer genes which allow them to adapt to diverse environments, and these can include incompatibility group (Inc) FIB plasmids. This study was undertaken to evaluate the genomic and phenotypic characteristics of IncFIB-positive Salmonella enterica serovar Typhimurium isolates from food animal sources, to identify their plasmid content, assess antimicrobial resistance and virulence properties, and compare their genotypic isolates with more recently isolated S. Typhimurium isolates from food animal sources. Methods: We identified 71 S. Typhimurium isolates that carried IncFIB plasmids. These isolates were subjected to whole genome sequencing and evaluated for bacteriocin production, antimicrobial susceptibility, the ability to transfer resistance plasmids, and a subset was evaluated for their ability to invade and persist in intestinal human epithelial cells. Results: Approximately 30% of isolates (n = 21) displayed bacteriocin inhibition of Escherichia coli strain J53. Bioinformatic analyses using PlasmidFinder software confirmed that all isolates contained IncFIB plasmids along with multiple other plasmid replicon types. Comparative analyses showed that all strains carried multiple antimicrobial resistance genes and virulence factors including iron acquisition genes, such as iucABCD (75%), iutA (94%), sitABCD (76%) and sitAB (100%). In 17 cases (71%), IncFIB plasmids, along with other plasmid replicon types, were able to conjugally transfer antimicrobial resistance and virulence genes to the susceptible recipient strain. For ten strains, persistence cell counts (27%) were noted to be significantly higher than invasion bacterial cell counts. When the genome sequences of the study isolates collected from 1998–2003 were compared to those published from subsequent years (2005–2018), overlapping genotypes were found, indicating the perseverance of IncFIB positive strains in food animal populations. This study confirms that IncFIB plasmids can play a potential role in disseminating antimicrobial resistance and virulence genes amongst bacteria from several food animal species. 
    more » « less
  3. Escherichia coli comprises diverse strains with a large accessory genome, indicating functional diversity and the ability to adapt to a range of niches. Specific strains would display greatest fitness in niches matching their combination of phenotypic traits. Given this hypothesis, we sought to determine whether E. coli in a peri-urban pond and associated cattle pasture display niche preference. Samples were collected from water, sediment, aquatic plants, water snails associated with the pond, as well as bovine feces from cattle in an adjacent pasture. Isolates (120) were obtained after plating on Membrane Lactose Glucuronide Agar (MLGA). We used the uidA and mutS sequences for all isolates to determine phylogeny by maximum likelihood, and population structure through gene flow analysis. PCR was used to allocate isolates to phylogroups and to determine the presence of pathogenicity/virulence genes (stxI, stxII, eaeA, hlyA, ST, and LT). Antimicrobial resistance was determined using a disk diffusion assay for Tetracycline, Gentamicin, Ciprofloxacin, Meropenem, Ceftriaxone, and Azithromycin. Our results showed that isolates from water, sediment, and water plants were similar by phylogroup distribution, virulence gene distribution, and antibiotic resistance while both snail and feces populations were significantly different. Few of the feces isolates were significantly similar to aquatic ones, and most of the snail isolates were also different. Population structure analysis indicated three genetic backgrounds associated with bovine, snail, and aquatic environments. Collectively these data support niche preference of E. coli isolates occurring in this ecosystem. 
    more » « less
  4. Parkhill, Julian (Ed.)
    ABSTRACT

    DiarrheagenicEscherichia coli, collectively known as DEC, is a leading cause of diarrhea, particularly in children in low- and middle-income countries. Diagnosing infections caused by different DEC pathotypes traditionally relies on the cultivation and identification of virulence genes, a resource-intensive and error-prone process. Here, we compared culture-based DEC identification with shotgun metagenomic sequencing of whole stool using 35 randomly drawn samples from a cohort of diarrhea-afflicted patients. Metagenomic sequencing detected the cultured isolates in 97% of samples, revealing, overall, reliable detection by this approach. Genome binning yielded high-qualityE. colimetagenome-assembled genomes (MAGs) for 13 samples, and we observed that the MAG did not carry the diagnostic DEC virulence genes of the corresponding isolate in 60% of these samples. Specifically, two distinct scenarios were observed: diffusely adherentE. coli(DAEC) isolates without corresponding DAEC MAGs appeared to be relatively rare members of the microbiome, which was further corroborated by quantitative PCR (qPCR), and thus unlikely to represent the etiological agent in 3 of the 13 samples (~23%). In contrast, ETEC virulence genes were located on plasmids and largely escaped binning in associated MAGs despite being prevalent in the sample (5/13 samples or ~38%), revealing limitations of the metagenomic approach. These results provide important insights for diagnosing DEC infections and demonstrate how metagenomic methods can complement isolation efforts and PCR for pathogen identification and population abundance.

    IMPORTANCE

    Diagnosing enteric infections based on traditional methods involving isolation and PCR can be erroneous due to isolation and other biases, e.g., the most abundant pathogen may not be recovered on isolation media. By employing shotgun metagenomics together with traditional methods on the same stool samples, we show that mixed infections caused by multiple pathogens are much more frequent than traditional methods indicate in the case of acute diarrhea. Further, in at least 8.5% of the total samples examined, the metagenomic approach reliably identified a different pathogen than the traditional approach. Therefore, our results provide a methodology to complement existing methods for enteric infection diagnostics with cutting-edge, culture-independent metagenomic techniques, and highlight the strengths and limitations of each approach.

     
    more » « less
  5. Abstract

    Sugarcane mosaic virus (SCMV) is a widely distributed potyvirus that causes mosaic disease in sugarcane, maize, sorghum, canna, and other monocot species worldwide. This study used 139 SCMV full-length genome sequences to analyze the phylogenetic relatedness of geographically distinct isolates. The phylogenetic analysis revealed four major groups of SCMV isolates that relate to their primary host. The geographic locations for some isolates appear to be mismatched within the tree, suggesting either that convergent molecular evolution has occurred or that the tree reconstruction produces statistically significant incongruences that create uncertainty in the true evolutionary relationships of these virus isolates. Recombination analysis showed hot spots across most of the genome except in the coat protein (CP) coding region. We examined 161 SCMV CP sequences from the GenBank database, including sequences from samples collected in Pakistan, a region that has not been included in prior phylogenetic studies. These data suggest that the SCMV isolates from sugarcane (Saccharum officinarum) predate isolates from all other hosts, regardless of their geographic origins.

     
    more » « less