skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Population Genetics, Virulence, and Public Health Concerns of Escherichia coli Collected From Rats Within an Urban Environment
The co-existence of rats and humans in urban environments has long been a cause for concern regarding human health because of the potential for rats to harbor and transmit disease-causing pathogens. Here, we analyze whole-genome sequence (WGS) data from 41 Escherichia coli isolates collected from rat feces from 12 locations within the city of Chicago, IL, United States to determine the potential for rats to serve as a reservoir for pathogenic E. coli and describe its population structure. We identified 25 different serotypes, none of which were isolated from strains containing significant virulence markers indicating the presence of Shiga toxin-producing and other disease-causing E . coli . Nor did the E. coli isolates harbor any particularly rare stress tolerant or antimicrobial resistance genes. We then compared the isolates against a public database of approximately 100,000 E. coli and Shigella isolates of primarily food, food facility, or clinical origin. We found that only one isolate was genetically similar to genome sequences in the database. Phylogenetic analyses showed that isolates cluster by serotype, and there was little geographic structure (e.g., isolation by distance) among isolates. However, a greater signal of isolation by distance was observed when we compared genetic and geographic distances among isolates of the same serotype. This suggests that E. coli serotypes are independent lineages and recombination between serotypes is rare.  more » « less
Award ID(s):
1923882
PAR ID:
10302046
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Salmonella enterica is one of the most common bacterial foodborne pathogens in the United States, causing illnesses that range from self-limiting gastroenteritis to more severe, life threatening invasive disease. Many Salmonella strains contain plasmids that carry virulence, antimicrobial resistance, and/or transfer genes which allow them to adapt to diverse environments, and these can include incompatibility group (Inc) FIB plasmids. This study was undertaken to evaluate the genomic and phenotypic characteristics of IncFIB-positive Salmonella enterica serovar Typhimurium isolates from food animal sources, to identify their plasmid content, assess antimicrobial resistance and virulence properties, and compare their genotypic isolates with more recently isolated S. Typhimurium isolates from food animal sources. Methods: We identified 71 S. Typhimurium isolates that carried IncFIB plasmids. These isolates were subjected to whole genome sequencing and evaluated for bacteriocin production, antimicrobial susceptibility, the ability to transfer resistance plasmids, and a subset was evaluated for their ability to invade and persist in intestinal human epithelial cells. Results: Approximately 30% of isolates (n = 21) displayed bacteriocin inhibition of Escherichia coli strain J53. Bioinformatic analyses using PlasmidFinder software confirmed that all isolates contained IncFIB plasmids along with multiple other plasmid replicon types. Comparative analyses showed that all strains carried multiple antimicrobial resistance genes and virulence factors including iron acquisition genes, such as iucABCD (75%), iutA (94%), sitABCD (76%) and sitAB (100%). In 17 cases (71%), IncFIB plasmids, along with other plasmid replicon types, were able to conjugally transfer antimicrobial resistance and virulence genes to the susceptible recipient strain. For ten strains, persistence cell counts (27%) were noted to be significantly higher than invasion bacterial cell counts. When the genome sequences of the study isolates collected from 1998–2003 were compared to those published from subsequent years (2005–2018), overlapping genotypes were found, indicating the perseverance of IncFIB positive strains in food animal populations. This study confirms that IncFIB plasmids can play a potential role in disseminating antimicrobial resistance and virulence genes amongst bacteria from several food animal species. 
    more » « less
  2. Parkhill, Julian (Ed.)
    ABSTRACT DiarrheagenicEscherichia coli, collectively known as DEC, is a leading cause of diarrhea, particularly in children in low- and middle-income countries. Diagnosing infections caused by different DEC pathotypes traditionally relies on the cultivation and identification of virulence genes, a resource-intensive and error-prone process. Here, we compared culture-based DEC identification with shotgun metagenomic sequencing of whole stool using 35 randomly drawn samples from a cohort of diarrhea-afflicted patients. Metagenomic sequencing detected the cultured isolates in 97% of samples, revealing, overall, reliable detection by this approach. Genome binning yielded high-qualityE. colimetagenome-assembled genomes (MAGs) for 13 samples, and we observed that the MAG did not carry the diagnostic DEC virulence genes of the corresponding isolate in 60% of these samples. Specifically, two distinct scenarios were observed: diffusely adherentE. coli(DAEC) isolates without corresponding DAEC MAGs appeared to be relatively rare members of the microbiome, which was further corroborated by quantitative PCR (qPCR), and thus unlikely to represent the etiological agent in 3 of the 13 samples (~23%). In contrast, ETEC virulence genes were located on plasmids and largely escaped binning in associated MAGs despite being prevalent in the sample (5/13 samples or ~38%), revealing limitations of the metagenomic approach. These results provide important insights for diagnosing DEC infections and demonstrate how metagenomic methods can complement isolation efforts and PCR for pathogen identification and population abundance. IMPORTANCEDiagnosing enteric infections based on traditional methods involving isolation and PCR can be erroneous due to isolation and other biases, e.g., the most abundant pathogen may not be recovered on isolation media. By employing shotgun metagenomics together with traditional methods on the same stool samples, we show that mixed infections caused by multiple pathogens are much more frequent than traditional methods indicate in the case of acute diarrhea. Further, in at least 8.5% of the total samples examined, the metagenomic approach reliably identified a different pathogen than the traditional approach. Therefore, our results provide a methodology to complement existing methods for enteric infection diagnostics with cutting-edge, culture-independent metagenomic techniques, and highlight the strengths and limitations of each approach. 
    more » « less
  3. IntroductionThe rise in extended-spectrum beta-lactamase (ESBL)-producingEnterobacteriaceaein dairy cattle farms poses a risk to human health as they can spread to humans through the food chain, including raw milk. This study was designed to determine the status, antimicrobial resistance, and pathogenic potential of ESBL-producing -E. coliand -Klebsiellaspp. isolates from bulk tank milk (BTM). MethodsThirty-three BTM samples were collected from 17 dairy farms and screened for ESBL-E. coliand -Klebsiellaspp. on CHROMagar ESBL plates. All isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). ResultsTen presumptive ESBL-producing bacteria, eightE. coli, and twoK. pneumoniaewere isolated. The prevalence of ESBL-E. coliand -K. pneumoniaein BTM was 21.2% and 6.1%, respectively. ESBL-E. coliwere detected in 41.2% of the study farms. Seven of the ESBL-E. coliisolates were multidrug resistant (MDR). The two ESBL-producingK. pneumoniaeisolates were resistant to ceftriaxone. Seven ESBL-E. colistrains carry theblaCTX-Mgene, and five of them co-harboredblaTEM-1. ESBL-E. colico-harboredblaCTX-Mwith other resistance genes, includingqnrB19,tet(A),aadA1,aph(3’’)-Ib,aph(6)-Id),floR,sul2, and chromosomal mutations (gyrA, gyrB, parC, parE, and pmrB). MostE. coliresistance genes were associated with mobile genetic elements, mainly plasmids. Six sequence types (STs) ofE. coliwere detected. All ESBL-E. coliwere predicted to be pathogenic to humans. Four STs (three ST10 and ST69) were high-risk clones ofE. coli. Up to 40 virulence markers were detected in allE. coliisolates. One of theK. pneumoniaewas ST867; the other was novel strain.K. pneumoniaeisolates carried three types of beta-lactamase genes (blaCTX-M,blaTEM-1andblaSHV). The novelK. pneumoniaeST also carried a novel IncFII(K) plasmid ST. ConclusionDetection of high-risk clones of MDR ESBL-E. coliand ESBL-K. pneumoniaein BTM indicates that raw milk could be a reservoir of potentially zoonotic ESBL-E. coliand -K. pneumoniae. 
    more » « less
  4. Escherichia coli comprises diverse strains with a large accessory genome, indicating functional diversity and the ability to adapt to a range of niches. Specific strains would display greatest fitness in niches matching their combination of phenotypic traits. Given this hypothesis, we sought to determine whether E. coli in a peri-urban pond and associated cattle pasture display niche preference. Samples were collected from water, sediment, aquatic plants, water snails associated with the pond, as well as bovine feces from cattle in an adjacent pasture. Isolates (120) were obtained after plating on Membrane Lactose Glucuronide Agar (MLGA). We used the uidA and mutS sequences for all isolates to determine phylogeny by maximum likelihood, and population structure through gene flow analysis. PCR was used to allocate isolates to phylogroups and to determine the presence of pathogenicity/virulence genes (stxI, stxII, eaeA, hlyA, ST, and LT). Antimicrobial resistance was determined using a disk diffusion assay for Tetracycline, Gentamicin, Ciprofloxacin, Meropenem, Ceftriaxone, and Azithromycin. Our results showed that isolates from water, sediment, and water plants were similar by phylogroup distribution, virulence gene distribution, and antibiotic resistance while both snail and feces populations were significantly different. Few of the feces isolates were significantly similar to aquatic ones, and most of the snail isolates were also different. Population structure analysis indicated three genetic backgrounds associated with bovine, snail, and aquatic environments. Collectively these data support niche preference of E. coli isolates occurring in this ecosystem. 
    more » « less
  5. Abstract Moraxella catarrhalis (M. catarrhalis) is a pathogenic gram-negative bacterium that causes otitis media and sinusitis in children. Three major serotypes A, B and C are identified to account for approximately 95% of the clinical isolates. Understanding the conformational properties of different serotypes of M. catarrhalis provides insights into antigenic determinants. In this work, all-atom molecular dynamics simulations were conducted for M. catarrhalis lipooligosaccharide (LOS) bilayer systems and oligosaccharides (OS) in water solution to investigate the conformational similarities and differences of three serotypes. For up to 10 neutral monosaccharides in the core part, the conformational ensembles described by the pair-wise root mean square deviation distributions are similar among the three serotypes of either the LOS or OS. At the central β-($$1\to4$$)-linkage, anti-$$\psi$$ conformation in conjunction with the gauche-gauche (g−) conformation of the central trisubstituted glucosyl residue is observed as the dominant conformation to sustain the structural characteristics of M. catarrhalis three types, which is further supported by calculated transglycosidic $${}^3{J}_{C,H}\Big({\psi}_H\Big)$$ of serotype A in comparison to experimental data. Interestingly, the conformational variability of three serotypes is more restricted for the OS in water solution than that in the LOS bilayer systems. The LOS–LOS interactions in the bilayer systems are responsible for the increased conformational diversity despite of tight packing. Solvent-accessible surface area analysis suggests that a trisaccharide attached to the β-($$1\to 6$$)-linked sugar in all three serotypes of LOS could be the common epitope and have the possibility to interact with antibodies. 
    more » « less