skip to main content


Title: Process Multiplicity and Process Dynamics: Weaving the Space of Possible Paths
In research on process organization studies, the concept of multiplicity is widely used, but a fundamental confusion about what process multiplicity means persists. As a result, we miss some of the potential of this concept for understanding process dynamics and process change. In this paper, we define process multiplicity as a duality of ‘one’ and ‘many’, and we conceptualize ‘the many’ as a space of possible paths encompassed by a process. We use the notion of paths to operationalize process multiplicity and make it accessible for empirical research. When we see process as a multiplicity, process change can be understood as expanding, shifting or contracting the space of possible paths. We suggest that this concept of process multiplicity also has implications for a range of other theoretical and practical topics, including standards, standardization and flexibility as well as process replication, management and resilience.  more » « less
Award ID(s):
1734237
NSF-PAR ID:
10302051
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Organization Theory
Volume:
1
Issue:
3
ISSN:
2631-7877
Page Range / eLocation ID:
263178772096313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies. 
    more » « less
  2. Summary

    Wait‐freedom guarantees that all processes complete their operations in a finite number of steps regardless of the delay of any process. Combinatorial topology has been proposed in the literature as a formal verification technique to prove the wait‐free computability of decision tasks. Wait‐freedom is proved through the properties of a static topological structure that expresses all possible combinations of execution paths of the protocol solving the decision task. The practical application of combinatorial topology as a formal verification technique is limited because the existing theory only considers protocols in which the manner of communication between processes is through read‐write memory. This research proposes an extension to the existing theory, called the CAS‐extended model. The extended theory includes Compare‐And‐Swap (CAS) and Load‐Link/Store‐Conditional (LL/SC), which are atomic primitives used to achieve wait‐freedom in state‐of‐the‐art protocols. The CAS‐extended model theory can be used to formally verify wait‐free algorithms used in practice, such as concurrent data structures. We present new definitions detailing the construction of a protocol complex in the CAS‐extended model. As a proof‐of‐concept, we formally verify a wait‐free queue with three processes using the CAS‐extended combinatorial topology.

     
    more » « less
  3. Abstract

    As communities face unrest and protest because of perceived racial bias and decreased trust and confidence in the criminal justice system, it is critical to explore mechanisms that foster institutional legitimacy. Voice is a central element in the procedural justice framework because it is anticipated to promote process control as well as a shared understanding between institutions and communities. As a concept, however, voice is undertheorized. Measures of voice used in legitimacy research may result in oversimplification of the concept, not fully capturing the struggles disadvantaged people face in trying to exercise influence in the court system. Through the use of rich data from qualitative interviews with youth and families involved in the juvenile justice system and in‐depth observations of juvenile court events, we explore what voice is, the mechanisms through which people try to assert voice, and how voice matters in the legal process. Respondents sought voice for many reasons, including to validate their experiences, to affirm their membership in a community, and to assert concerns about perceived police misconduct. Contrary to traditional conceptualizations of voice as a static event (e.g., having voice or not having voice), voice was a process of negotiating dialogue between court officials and court participants throughout the legal process.

     
    more » « less
  4. null (Ed.)
    Extrusion-based bioprinting is the most common printing technology used in regenerative medicine. Despite recent technological advances, a pressing challenge for extrusion printing is low spatial resolution, which limits the functionality of printed constructs. One of the reasons for the low spatial resolution is a lack of process monitoring and control strategies to monitor fabrication and correct for print errors. Few research efforts implement process control and investigate the relationship between extrusion process parameters and printing fidelity. The lack of understanding between process parameters and print results ultimately limits the complexity of the possible structures. For example, fabrication of structures whose topologies vary spatially within the part is not possible without advanced process control. Here we enable fabrication of advanced spatially graded structures by implementing process monitoring and control strategies. We develop material models to better understand the relationship between process parameters and printing outcomes. We also present an experimental procedure to generate a process map that provides insight into the regions of the processing space that produce the desired extrusion features (e.g., width of the filament). After generation of a process map and material models, we implement a process monitoring and control strategy that measures the feature error and intelligently updates the process control inputs to reduce defects and improve spatial fidelity, which will lead to better functionality of the final construct. 
    more » « less
  5. Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to a wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs. 
    more » « less