Modeling population dynamics is a fundamental problem with broad scientific applications. Motivated by real-world applications including biosystems with diverse populations, we consider a class of population dynamics modeling with two technical challenges: (i) dynamics to learn for individual particles are heterogeneous and (ii) available data to learn from are not time-series (i.e, each individual’s state trajectory over time) but cross-sectional (i.e, the whole population’s aggregated states without individuals matched over time). To address the challenges, we introduce a novel computational framework dubbed correlational Lagrangian Schrödinger bridge (CLSB) that builds on optimal transport to “bridge" cross-sectional data distributions. In contrast to prior methods regularizing all individuals’ transport “costs” and then applying them to the population homogeneously, CLSB directly regularizes population cost allowing for population heterogeneity and potentially improving model generalizability. Specifically our contributions include (1) a novel population perspective of the transport cost and a new class of population regularizers capturing the temporal variations in multivariate relations, with the tractable formulation derived, (2) three domain-informed instantiations of population regularizers on covariance, and (3) integration of population regularizers into data-driven generative models as constrained optimization and an approximate numerical solution, with further extension to conditional generative models. Empirically, we demonstrate the superiority of CLSB in single-cell sequencing data analyses (including cell differentiation and drug-conditioned cell responses) and opinion depolarization.
more »
« less
Numerical Approaches to Division and Label Structured Population Models
Division and label structured population models (DLSPMs) are a class of partial differential equations (PDEs) that have been used to study intracellular dynamics in dividing cells. DLSPMs have improved the understanding of cell proliferation assays involving measurements such as fluorescent label decay, protein production, and prion aggregate amplification. One limitation in using DLSPMs is the significant computational time required for numerical approximations, especially for models with complex biologically relevant dynamics. Here we develop a novel numerical and theoretical framework involving a recursive formulation for a class of DLSPMs. We develop this framework for a population of dividing cells with an arbitrary functional form describing the intracellular dynamics. We found that, compared to previous methods, our framework is faster and more accurate. We illustrate our approach on three common models for intracellular dynamics and discuss the potential impact of our findings in the context of data-driven methods for parameter estimation.
more »
« less
- Award ID(s):
- 1838314
- PAR ID:
- 10302340
- Date Published:
- Journal Name:
- Letters in biomathematics
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2373-7867
- Page Range / eLocation ID:
- 153-170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Csikász-Nagy, Attila (Ed.)Microbial populations show striking diversity in cell growth morphology and lifecycle; however, our understanding of how these factors influence the growth rate of cell populations remains limited. We use theory and simulations to predict the impact of asymmetric cell division, cell size regulation and single-cell stochasticity on the population growth rate. Our model predicts that coarse-grained noise in the single-cell growth rate λ decreases the population growth rate, as previously seen for symmetrically dividing cells. However, for a given noise in λ we find that dividing asymmetrically can enhance the population growth rate for cells with strong size control (between a “sizer” and an “adder”). To reconcile this finding with the abundance of symmetrically dividing organisms in nature, we propose that additional constraints on cell growth and division must be present which are not included in our model, and we explore the effects of selected extensions thereof. Further, we find that within our model, epigenetically inherited generation times may arise due to size control in asymmetrically dividing cells, providing a possible explanation for recent experimental observations in budding yeast. Taken together, our findings provide insight into the complex effects generated by non-canonical growth morphologies.more » « less
-
Abstract We extend our earlier mean field approximation of the Bolker–Pacala model of population dynamics by dividing the population into N classes, using a mean field approximation for each class but also allowing migration between classes as well as possibly suppressive influence of the population of one class over another class. For {N\geq 2} , we obtain one symmetric nontrivial equilibrium for the system and give global limit theorems. For {N=2} , we calculate all equilibrium solutions, which, under additional conditions, include multiple nontrivial equilibria. Lastly, we prove geometric ergodicity regardless of the number of classes when there is no population suppression across the classes.more » « less
-
Single-cell genomic technologies offer vast new resources with which to study cells, but their potential to inform parameter inference of cell dynamics has yet to be fully realized. Here we develop methods for Bayesian parameter inference with data that jointly measure gene expression and Ca2+dynamics in single cells. We propose to share information between cells via transfer learning: for a sequence of cells, the posterior distribution of one cell is used to inform the prior distribution of the next. In application to intracellular Ca2+signalling dynamics, we fit the parameters of a dynamical model for thousands of cells with variable single-cell responses. We show that transfer learning accelerates inference with sequences of cells regardless of how the cells are ordered. However, only by ordering cells based on their transcriptional similarity can we distinguish Ca2+dynamic profiles and associated marker genes from the posterior distributions. Inference results reveal complex and competing sources of cell heterogeneity: parameter covariation can diverge between the intracellular and intercellular contexts. Overall, we discuss the extent to which single-cell parameter inference informed by transcriptional similarity can quantify relationships between gene expression states and signalling dynamics in single cells.more » « less
-
Interacting particle system (IPS) models have proven to be highly successful for describing the spatial movement of organisms. However, it is challenging to infer the interaction rules directly from data. In the field of equation discovery, the weak-form sparse identification of nonlinear dynamics (WSINDy) methodology has been shown to be computationally efficient for identifying the governing equations of complex systems from noisy data. Motivated by the success of IPS models to describe the spatial movement of organisms, we develop WSINDy for the second-order IPS to learn equations for communities of cells. Our approach learns the directional interaction rules for each individual cell that in aggregate govern the dynamics of a heterogeneous population of migrating cells. To sort a cell according to the active classes present in its model, we also develop a novel ad hoc classification scheme (which accounts for the fact that some cells do not have enough evidence to accurately infer a model). Aggregated models are then constructed hierarchically to simultaneously identify different species of cells present in the population and determine best-fit models for each species. We demonstrate the efficiency and proficiency of the method on several test scenarios, motivated by common cell migration experiments.more » « less
An official website of the United States government

