Climate change by its very nature epitomizes the necessity and usefulness of the global-to-local-to-global (GLG) paradigm. It is a global problem with the potential to affect local communities and ecosystems. Accumulation of local impacts and responses to climate change feeds back to regional and global systems creating feedback loops. Understanding these complex impacts and interactions is key to developing more resilient adaptation measures and designing more efficient mitigation policies. To this date, however, GLG interactions have not yet been an integrative part of the decision-support toolkit. The typical approach either traces the impacts of global action on the local level or estimates the implications of local policies at the global scale. The first approach misses cumulative feedback of local responses that can have regional, national or global impacts. In the second case, one undermines a global context of the local actions most likely misrepresenting the complexity of the local decision-making process. Potential interactions across scales are further complicated by the presence of cascading impacts, connected risks and tipping points. Capturing these dimensions is not always a straightforward task and often requires a departure from conventional modeling approaches. In this paper, we review the state-of-the-art approaches to modeling GLG interactions in the context of climate change. We further identify key limitations that drive the lack of GLG coupling cases and discuss what could be done to address these challenges.
Global change drivers of land-use/cover change (LUCC) like population dynamics, economic development, and climate change are increasingly important to local sustainability studies, and can only be properly analyzed at fine-scales that capture local biophysical and socio-economic conditions. When sufficiently widespread, local feedback to stresses originating from global drivers can have regional, national, and even global impacts. A multiscale, global-to-local-to-global (GLG) framework is thus needed for comprehensive analyses of LUCC and leakage. The number of GLG-LUCC studies has grown substantially over the past years, but no reviews of this literature and their contributions have been completed so far. In fact, the largest body of literature pertains to global-to-local impacts exclusively, whereas research on local feedback to regional, national, and global spheres remain scarce, and are almost solely undertaken within large modeling institutes. As such, those are rarely readily accessible for modification and extension by outside contributors. This review of the recent GLG-LUCC studies calls for more open-source modeling and availability of data, arguing that the latter is the real constraint to more widespread analyses of GLG-LUCC impacts. Progress in this field will require contributions from hundreds of researchers around the world and from a wide variety of disciplines.
more » « less- PAR ID:
- 10302420
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 053003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Population concentration and built‐up land expansion are two prominent features of contemporary urbanization. Existing literature on the population aspect of urbanization has mostly focused on national and regional aggregates, and literature on the land development aspect has often relied on spatial case studies of individual cities or their meta‐analyses. Using newly‐available data, here we conduct the first global‐coverage, spatial analysis of the relationship between (changes in) population and built‐up land at multiple spatial scales, and compare to existing common beliefs about urbanization based on individual city studies. We find that population and built‐up land show distinctly different spatial and temporal patterns (with a global correlation coefficient around 0.6). Contrary to common impressions, our results show that during recent decades, developed and developing regions across the world experienced comparable amounts of built‐up land expansion. While meta‐analyses have reported that built‐up land in urban areas expands globally on average twice as fast as population grows, our results show the global change rates of built‐up land and population are similar. Also, most global population, including what national statistics agencies call urban population, reside in areas with low land development levels (which are frequently less than 5% built up). These changes in perspective suggest that urbanization's potential large‐scale impacts may need to be re‐evaluated, and lead to best‐practice recommendations for urbanization modeling and analysis. Especially, the common practice in large‐scale earth system modeling of assuming demographically‐defined urban population resides in areas with medium to high built‐up land development levels should change.
-
Abstract Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.
-
Abstract Global food security can be threatened by short-term extreme events that negatively impact food production, food purchasing power, and agricultural economic activity. At the same time, environmental pollutants like greenhouse gases (GHGs) can be reduced due to the same short-term extreme stressors. Stress events include pandemics like COVID-19 and widespread droughts like those experienced in 2015. Here we consider the question: what if COVID-19 had co-occurred with a 2015-like drought year? Using a coupled biophysical-economic modeling framework, we evaluate how this compound stress would alter both agricultural sector GHG emissions and change the number of undernourished people worldwide. We further consider three interdependent adaptation options: local water use for crop production, regional shifts in cropland area, and global trade of agricultural products. We find that GHG emissions decline due to reduced economic activity in the agricultural sector, but this is paired with large increases in undernourished populations in developing nations. Local and regional adaptations that make use of natural resources enable global-scale reductions in impacted populations via increased global trade.
-
Abstract This special issue is the outcome of a workshop held at Purdue University in April 2022. It comprises thematic syntheses of five overarching dimensions of the Global-to-Local-to-Global (GLG) challenge to ensuring the long-term sustainability of land and water resources. These thematic dimensions include: climate change, ecosystems and biodiversity, governance, water resources and cyberinfrastructure. In addition, there are eight applications of GLG analysis to specific land and water sustainability challenges, ranging from environmental stress in the Amazon River Basin to groundwater depletion in the United States. Based on these papers, we conclude that, without fine-scale, local analysis, interventions focusing on land and water sustainability will likely be misguided. But formulating such policies without the broader, national/global context is also problematic – both from the point of view of the global drivers of local sustainability stresses, as well as to capture unanticipated spillovers. In addition, because local and global systems are connected to – and mediated by – meso-scale processes, accounting for key meso-scale phenomena, such as labor market functioning, is critical for characterizing GLG interactions. We also conclude that there is great scope for increasing the complexity of GLG analysis in future work. However, this carries significant risks. Increased complexity can outstrip data and modeling capabilities, slow down research, make results more difficult to understand and interpret, and complicate effective communication with decision-makers and other users of the analyses. We believe that research guidance regarding appropriate complexity is a high priority in the emerging field of Global-Local-Global analysis of sustainability.