skip to main content


Title: 3,4,5‐Trimethoxy Substitution on an N‐DMBI Dopant with New N‐Type Polymers: Polymer‐Dopant Matching for Improved Conductivity‐Seebeck Coefficient Relationship
Abstract

Achieving high electrical conductivity and thermoelectric power factor simultaneously for n‐type organic thermoelectrics is still challenging. By constructing two new acceptor‐acceptor n‐type conjugated polymers with different backbones and introducing the 3,4,5‐trimethoxyphenyl group to form the new n‐type dopant 1,3‐dimethyl‐2‐(3,4,5‐trimethoxyphenyl)‐2,3‐dihydro‐1H‐benzo[d]imidazole (TP‐DMBI), high electrical conductivity of 11 S cm−1and power factor of 32 μW m−1 K−2are achieved. Calculations using Density Functional Theory show that TP‐DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of −1.94 eV than that of the common dopant 4‐(1, 3‐dimethyl‐2, 3‐dihydro‐1H‐benzoimidazol‐2‐yl) phenyl) dimethylamine (N‐DMBI) (−2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n‐type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N‐DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP‐DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V−1 s−1than films with N‐DMBI doping, demonstrating the potential of TP‐DMBI, and 3,4,5‐trialkoxy DMBIs more broadly, for high performance n‐type organic thermoelectrics.

 
more » « less
NSF-PAR ID:
10302643
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
133
Issue:
52
ISSN:
0044-8249
Format(s):
Medium: X Size: p. 27418-27425
Size(s):
["p. 27418-27425"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Achieving high electrical conductivity and thermoelectric power factor simultaneously for n‐type organic thermoelectrics is still challenging. By constructing two new acceptor‐acceptor n‐type conjugated polymers with different backbones and introducing the 3,4,5‐trimethoxyphenyl group to form the new n‐type dopant 1,3‐dimethyl‐2‐(3,4,5‐trimethoxyphenyl)‐2,3‐dihydro‐1H‐benzo[d]imidazole (TP‐DMBI), high electrical conductivity of 11 S cm−1and power factor of 32 μW m−1 K−2are achieved. Calculations using Density Functional Theory show that TP‐DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of −1.94 eV than that of the common dopant 4‐(1, 3‐dimethyl‐2, 3‐dihydro‐1H‐benzoimidazol‐2‐yl) phenyl) dimethylamine (N‐DMBI) (−2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n‐type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N‐DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP‐DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V−1 s−1than films with N‐DMBI doping, demonstrating the potential of TP‐DMBI, and 3,4,5‐trialkoxy DMBIs more broadly, for high performance n‐type organic thermoelectrics.

     
    more » « less
  2. Abstract

    A pre‐formed Meisenheimer complex of a naphthalenediimide (NDI) with tetrabutylammonium fluoride (TBAF) is obtained in a simple way by mixing dibrominated 4,9‐dibromo‐2,7‐bis(2‐octyldodecyl)benzo[lmn][3,8]phenanthroline‐1,3,6,8(2H,7H)‐tetraone and TBAF in solution and used as a dopant for n‐type organic thermoelectrics. Two n‐type polymers PNDIClTVT and PBDOPVTT are synthesized, n‐doped, and characterized as conductive and thermoelectric materials. PNDIClTVT doped with NDI‐TBAF presents a high σ value of 0.20 S cm–1, a Seebeck coefficient (S) of −1854 µV K–1, and a power factor (PF) of 67 µW m–1K–2, among the highest reported PF in solution‐processed conjugated n‐type polymer thermoelectrics. Using 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine and NDI‐TBAF as co‐dopants, PNDIClTVT has a PF > 35 µW m–1K–2; while for PBDOPVTT σ = 0.75 S cm–1and PF = 58 µW m–1K–2. In this study it is found that an ionic adduct together with a neutral dopant improves the performance of n‐type organic thermoelectrics leading to an enhanced power factor, and more generally, the role of such an adduct in polymer doping is also elucidated.

     
    more » « less
  3. Abstract

    A novel n‐type copolymer dopant polystyrene–poly(4‐vinyl‐N‐hexylpyridinium fluoride) (PSpF) with fluoride anions is designed and synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. This is thought to be the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm–1and high power factor of 67 µW m–1K–2are achieved for PSpF‐doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm–1at 88 °C and outstanding thermal stability are recorded. Further, organic transistors of PSpF‐doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm2V–1s–1, respectively. The results suggest that polystyrene–poly(vinylpyridinium) salt copolymers with fluoride anions are promising for high‐performance n‐type all‐polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to the Seebeck coefficient, high power factor, thermal stability, and broad processing window.

     
    more » « less
  4. Abstract

    Two donor–acceptor (D–A) polymers are obtained by coupling difluoro‐ and dichloro‐substituted forms of the electron‐deficient unit BDOPV and the relatively weak donor moiety dichlorodithienylethene (ClTVT). The conductivity and power factors of doped devices are different for the chlorinated and fluorinated BDOPV polymers. A high electron conductivity of 38.3 and 16.1 S cm−1are obtained from the chlorinated and fluorinated polymers with N‐DMBI, respectively, and 12.4 and 2.4 S cm−1are obtained from the chlorinated and fluorinated polymers with CoCp2, respectively, from drop‐cast devices. The corresponding power factors are 22.7, 7.6, 39.5, and 8.0 µW m−1K−2, respectively. Doping of PClClTVT with N‐DMBI results in excellent air stability; the electron conductivity of devices with 50 mol% N‐DMBI as dopant remained up to 4.9 S m−1after 222 days in the air, the longest for an n‐doped polymer stored in air, with a thermoelectric power factor of 9.3 µW m−1K−2. However, the conductivity of PFClTVT‐based devices can hardly be measured after 103 days. These observations are consistent with morphologies determined by grazing incidence wide angle X‐ray scattering and atomic force microscopy.

     
    more » « less
  5. Abstract

    N‐Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N‐type polymers with high crystallinity and order are generally used for high‐conductivity () organic conductors. Few n‐type polymers with only short‐range lamellar stacking for high‐conductivity materials have been reported. Here, we describe an n‐type short‐range lamellar‐stacked all‐polymer thermoelectric system with highestof 78 S−1, power factor (PF) of 163 μW m−1 K−2, and maximum Figure of merit (ZT) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (S) absolute values relative to, and atypical decreased thermal conductivity () with increased doping ratio contribute to the promising performance.

     
    more » « less