skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of vacancy-induced polarization and distortion on diffusion in solid electrolyte Li 3 OCl
Lithium-rich oxychloride antiperovskites are promising solid electrolytes for enabling next-generation batteries. Here, we report a comprehensive study varying Li + concentrations in Li 3 OCl using ab initio molecular dynamics simulations. The simulations accurately capture the complex interactions between Li + vacancies ( V Li ′ ), the dominant mobile species in Li 3 OCl . The V Li ′ polarize and distort the host lattice, inducing additional non-vacancy-mediated diffusion mechanisms and correlated diffusion events that reduce the activation energy barrier at concentrations as low as 1.5% V Li ′ . Our analyses of discretized diffusion events in both space and time illustrate the critical interplay between correlated dynamics, polarization and local distortion in promoting ionic conductivity in Li 3 OCl . This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.  more » « less
Award ID(s):
1710630
PAR ID:
10302694
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
379
Issue:
2211
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Localized atomistic disorder in halide‐based solid electrolytes (SEs) can be leveraged to boost Li+mobility. In this study, Li+transport in structurally modified Li3HoCl6, via Brintroduction and Li+deficiency, is explored. The optimized Li3‐3yHo1+yCl6‐xBrxachieves an ionic conductivity of 3.8 mS cm−1at 25 °C, the highest reported for holmium halide materials.6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+motional rate neighboring 116 MHz. X‐ray diffraction analyses reveal mixed‐anion‐induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho‐free planes with favorable energetics for Li+migration. Bond valence site energy analysis highlights preferred Li+transport pathways, particularly in structural planes devoid of Ho3+blocking effects. Molecular dynamics simulations corroborate enhanced Li+diffusion with Brintroduction into Li3HoCl6. Li‐Ho electrostatic repulsions in the (001) plane presumably drive Li+diffusion into the Ho‐free (002) layer, enabling rapid intraplanar Li+motion and exchange between the 2d and 4h sites. Li3‐3yHo1+yCl6‐xBrxalso demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high‐performance fast ion conductors for all‐solid‐state batteries. 
    more » « less
  2. Optimizing lithium-ion battery (LIB) electrolytes is essential for high-current applications such as electric vehicles, yet experimental techniques to characterize the complex structural dynamics within these electrolytes are limited. These dynamics are responsible for Li+ transport. In this study, we used ultrafast infrared spectroscopy to measure chemical exchange, spectral diffusion, and solvation structures across a wide range of lithium concentrations in propylene carbonate-based LiTFSI (lithium bis(trifluoromethanesulfonimide) electrolytes, with the CN stretch of phenyl selenocyanate as the long-lived vibrational probe. Phenyl selenocyanate is shown to be an excellent dynamical surrogate for propylene carbonate in Li+ solvation clusters. A strong correlation between exchange times and ionic conductivity was observed. This correlation and other observations suggest structural diffusion as the primary transport mechanism rather than vehicular diffusion. Additionally, spectral diffusion observables measured by the probe were directly linked to the de-solvation dynamics of the Li+ clusters, as supported by density functional theory and molecular dynamics simulations. These findings provide detailed molecular-level insights into LIB electrolytes’ transport dynamics and solvation structures, offering rational design pathways to advanced electrolytes for next-generation LIBs. 
    more » « less
  3. Abstract The development of all‐solid‐state Li‐ion batteries requires solid electrolyte materials with many desired properties, such as ionic conductivity, chemical and electrochemical stability, and mechanical durability. Computation‐guided materials design techniques are advantageous in designing and identifying new solid electrolytes that can simultaneously meet these requirements. In this joint computational and experimental study, a new family of fast lithium ion conductors, namely, LiTaSiO5with sphene structure, are successfully identified, synthesized, and demonstrated using a novel computational design strategy. First‐principles computation predicts that Zr‐doped LiTaSiO5sphene materials have fast Li diffusion, good phase stability, and poor electronic conductivity, which are ideal for solid electrolytes. Experiments confirm that Zr‐doped LiTaSiO5sphene structure indeed exhibits encouraging ionic conductivity. The lithium diffusion mechanisms in this material are also investigated, indicating the sphene materials are 3D conductors with facile 1D diffusion along the [101] direction and additional cross‐channel migration. This study demonstrates a novel design strategy of activating fast Li ionic diffusion in lithium sphenes, a new materials family of superionic conductors. 
    more » « less
  4. Amorphous Li 3 PS 4 (LPS) solid-state electrolytes are promising for energy-dense lithium metal batteries. LPS glass, synthesized from a 3 : 1 mol ratio of Li 2 S and P 2 S 5 , has high ionic conductivity and can be synthesized by ball milling or solution processing. Ball milling has been attractive because it provides the easiest route to access amorphous LPS with a conductivity of 3.5 × 10 −4 S cm −1 (20 °C). However, achieving the complete reaction of precursors via ball milling can be difficult, and most literature reports use X-ray diffraction (XRD) or Raman spectroscopy to confirm sample purity, both of which have limitations. Furthermore, the effect of residual precursors on ionic conductivity and lithium metal cycling is unknown. In this work, we illustrate the importance of multimodal characterization to determine LPS phase and chemical purity. To determine the residual Li 2 S content in LPS, we show that (1) XRD and 31 P solid state nuclear magnetic resonance (ssNMR) are insufficient and (2) Raman loses sensitivity at concentrations below 12 mol% Li 2 S. Most importantly, we show that 7 Li ssNMR is highly sensitive. Using 7 Li ssNMR, we investigate the effect of ball milling parameters and develop a robust and highly reproducible procedure for pure LPS synthesis. We find that as the residual Li 2 S precursor content increases, LPS conductivity decreases and lithium metal batteries exhibit higher overpotentials and poor cycle life. Our work reveals the importance of multimodal characterization techniques for amorphous solid-state electrolyte characterization and will enable better synthetic strategies for highly conductive electrolytes for efficient energy-dense solid-state lithium metal batteries. 
    more » « less
  5. Abstract Ionic liquids (ILs) are promising electrolytes for high‐performance Li‐ion batteries (LIBs), which can significantly improve the safety and energy storage capacity. Although extensive experimental and computational studies have reported, further exploration is needed to understand the properties of IL systems, their microscopic structures and dynamics, and the behavior of Li ions in ILs. We report here results of molecular dynamics simulations as a function of electric field for Li diffusion in two IL systems, [EMIM][TFSI] and [BMIM][TFSI] doped with various concentrations of LiTFSI. We find that the migration of each individual Li ion depends largely on its micro‐environment, leading to differences by factors of up to 100 in the diffusivity. The structural and dynamical properties indicate that Li diffusion is affected significantly by the coordination and interaction with the oxygen species in the TFSI anions. Moreover, the IL cations also contribute to the Li diffusion mechanism by attenuating the Li–TFSI interaction. 
    more » « less