skip to main content


Title: Advancing the integration of ecosystem services and livelihood adaptation
Abstract

Around the world today, the magnitude and rates of environmental, social, and economic change are undermining the sustainability of many rural societies that rely directly on natural resources for their livelihoods. Sustainable development efforts seek to promote livelihood adaptations that enhance food security and reduce social-ecological vulnerability, but these efforts are hampered by the difficulty of understanding the complexity and dynamism of rural livelihood systems. Disparate research avenues are strengthening our ability to grapple with complexity. But we are only just beginning to find ways to simultaneously account for problematic complexities, including multiscalar feedbacks in the ecosystems that that support livelihoods, the heterogeneous benefits garnered by different segments of society, and the complex contingencies that constrain people’s decisions and capacities to adapt. To provide a more nuanced analysis of the dynamics of transformation in rural livelihood systems, we identified key complementarities between four different research approaches, enabling us to integrate them in a novel research framework that can guide empirical and modeling research on livelihood adaptation. The framework capitalizes upon parallel concepts of sequentiality in (1) ecosystem services and (2) livelihood adaptation scholarship, then incorporates principles from (3) adaptation in social-ecological systems research to account for the dynamism inherent in these often rapidly-transforming systems. Lastly, we include advances in (4) agent-based modeling, which couples human decisions and land use change and provides tools to incorporate complex social-ecological feedbacks in simulation studies of livelihood adaptation. Here we describe the new Ecosystem Services—Livelihood Adaptation (ESLA) framework, explain how it links the contributing approaches, and illustrate its application with two case studies. We offer guidance for its implementation in empirical and modeling research, and conclude with a discussion of current challenges in sustainability science and the contributions that could be gained through research guided by the ESLA framework.

 
more » « less
NSF-PAR ID:
10302749
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
14
Issue:
12
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 124057
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the causes and consequences of environmental change is one of the key challenges facing researchers today as both types of information are required for decision making and adaptation planning. This need is particularly poignant in high latitude regions where permafrost thaw is causing widespread changes to local environments and the land-users who must adapt to changing conditions to sustain their livelihoods. The inextricable link between humans and their environments is recognized through socio-ecological systems research, yet many of these approaches employ top-down solutions that can lead to local irrelevance and create tensions amongst groups. We present and employ a framework for the use both of scientific and community-based knowledge sources that provides an enriched and thematic understanding of how permafrost thaw will affect northern land-users. Using geospatial modeling of permafrost vulnerability with community-based data from nine rural communities in Alaska, we show that permafrost thaw is a major driver of hazards for land-users and accounts for one-third to half of the hazards reported by community participants. This study develops an integrated permafrost-land-user system, providing a framework for thematic inquiry for future studies that will add value to large-scale institutional efforts and locally relevant observations of environmental change. 
    more » « less
  2. null (Ed.)
    Abstract Context Most protected areas are managed based on objectives related to scientific ecological knowledge of species and ecosystems. However, a core principle of sustainability science is that understanding and including local ecological knowledge, perceptions of ecosystem service provision and landscape vulnerability will improve sustainability and resilience of social-ecological systems. Here, we take up these assumptions in the context of protected areas to provide insight on the effectiveness of nature protection goals, particularly in highly human-influenced landscapes. Objectives We examined how residents’ ecological knowledge systems, comprised of both local and scientific, mediated the relationship between their characteristics and a set of variables that represented perceptions of ecosystem services, landscape change, human-nature relationships, and impacts. Methods We administered a face-to-face survey to local residents in the Sierra de Guadarrama protected areas, Spain. We used bi- and multi-variate analysis, including partial least squares path modeling to test our hypotheses. Results Ecological knowledge systems were highly correlated and were instrumental in predicting perceptions of water-related ecosystem services, landscape change, increasing outdoors activities, and human-nature relationships. Engagement with nature, socio-demographics, trip characteristics, and a rural–urban gradient explained a high degree of variation in ecological knowledge. Bundles of perceived ecosystem services and impacts, in relation to ecological knowledge, emerged as social representation on how residents relate to, understand, and perceive landscapes. Conclusions Our findings provide insight into the interactions between ecological knowledge systems and their role in shaping perceptions of local communities about protected areas. These results are expected to inform protected area management and landscape sustainability. 
    more » « less
  3. Abstract

    As the pressures on water resources are ever increasing, the organization of complex disparate data and scientific information to inform the actions to protect and enhance the resilience of freshwater resources is key for sustainable development and implementation of integrated water resource management (IWRM). Methodologies supporting IWRM implementation have largely focused on water management and governance, with less attention to evaluation methods of ecologic, economic, and social conditions. To assist in assessing water resource sustainability, the Integrated Hydro‐Environment Assessment Tool (IHEAT) has been developed to create a framework for different disciplines and interests to engage in structured dialogue. The IHEAT builds on the considerable body of knowledge developed around IWRM and seeks to place this information into a single framework that facilitates the cogeneration of knowledge between managers, stakeholders, and the communities affected by management decisions with the understanding that there is a need to merge expert analysis with traditional knowledge and the lived experience of communities. IHEAT merges the driver‐pressure‐state‐impact‐response (DPSIR) framework, the Millennium Ecosystem Assessment's ecosystem services and human well‐being (HWB) framework, sustainability criteria for water resource systems, and water resources indexes and sets of indicators to better understand spatiotemporal interactions between hydrologic, socioeconomic, and ecologic systems and evaluate impacts of disturbances on ecological goods and services and HWB. IHEAT consists of a Conceptual Template (IHEAT‐CT) which provides a systematic framework for assessing basin conditions and guiding indicator selection as well as an Assessment Interface (IHEAT‐AI) for organizing, processing, and assessing analytical results. The IHEAT‐CT, presented herein, is a rapid screening tool that connects water use directly, or through ecosystem goods and services (EGS), to constituents of HWB. Disturbance Templates for eight pressure types, such as land‐use change, climate change, and population growth, are provided to guide practitioners regarding potential changes to landscape elements in the hydrological cycle, impacts on EGS, and societal implications on HWB. The basin screening results in a summary report card illuminating key freshwater ecosystems, the EGS they provide, and potential responses to drivers and pressures acting on the hydrologic system. This screening provides a common understanding by technical and nontechnical parties and provides the foundation for more complex conceptual models should they be required. An indicator list guides the selection of hydrologic, ecologic, economic, and social analytical methods to support IWRM technical input.

     
    more » « less
  4. Abstract Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity–ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals. 
    more » « less
  5. Abstract Context

    Interdisciplinary borrowing between ecology and the social sciences has produced numerous insights about pastoral livelihood practices and rangeland ecology, demonstrating how people practicing pastoralism constantly modify their practices to adapt to social, political, economic, and biophysical change.

    Objectives

    I outline an approach for integrating research on pastoral livelihoods into a landscape ecology framework. I focus on access to land and resources, and an integrative approach to scale, to assess the relationship between landscape and social processes.

    Methods

    I use remotely sensed data and ethnographic analysis of livelihood change in two semi-arid contexts in Kenya to compare broad scale changes in pastoral mobility to spatio-temporal patterns of variability in rainfall and vegetation productivity. I then synthesize the political, economic, and social relations that have most prominently influenced access to land and restructured landscape process at finer scales.

    Results

    Spatial controls have been imposed on land use that have increasingly partitioned landscapes and concentrated pastoral access to land. Access to land has also been influenced by changes in social norms, employment, and market relations. Informal rules and norms, social differentiation, and exclusionary partitions have produced socially differentiated land use intensity gradients and novel landscape processes that have not previously been considered in landscape analyses in Kenya.

    Conclusions

    Understanding access, land use, and landscape processes as intertwined, with uneven processes of land and resource capture at different scales, would enable landscape ecologists to choose observational scales relevant to rural livelihoods and sensitive to power asymmetries, creating robust analytical linkages between social and ecological processes.

     
    more » « less