skip to main content

This content will become publicly available on January 1, 2023

Title: Toward Elucidating the Physiological Impacts of Residual Stresses in the Colorectum
Abstract Irritable bowel syndrome afflicts 10–20% of the global population, causing visceral pain with increased sensitivity to colorectal distension and normal bowel movements. Understanding and predicting these biomechanics will further advance our understanding of visceral pain and complement the existing literature on visceral neurophysiology. We recently performed a series of experiments at three longitudinal segments (colonic, intermediate, and rectal) of the distal 30 mm of colorectums of mice. We also established and fitted constitutive models addressing mechanical heterogeneity in both the through-thickness and longitudinal directions of the colorectum. Afferent nerve endings, strategically located within the submucosa, are likely nociceptors that detect concentrations of mechanical stresses to evoke the perception of pain from the viscera. In this study, we aim to: (1) establish and validate a method for incorporating residual stresses into models of colorectums, (2) predict the effects of residual stresses on the intratissue mechanics within the colorectum, and (3) establish intratissue distributions of stretches and stresses within the colorectum in vivo. To these ends we developed two-layered, composite finite element models of the colorectum based on our experimental evidence and validated our approaches against independent experimental data. We included layer- and segment-specific residual stretches/stresses in our simulations via the prestrain more » algorithm built into the finite element software febio. Our models and modeling approaches allow researchers to predict both organ and intratissue biomechanics of the colorectum and may facilitate better understanding of the underlying mechanical mechanisms of visceral pain. « less
 ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
Journal of Biomechanical Engineering
Sponsoring Org:
National Science Foundation
More Like this
  1. Abnormal colorectal biomechanics and mechanotransduction associate with an array of gastrointestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, diverticula disease, anorectal disorders, ileus, and chronic constipation. Visceral pain, principally evoked from mechanical distension, has a unique biomechanical component that plays a critical role in mechanotransduction, the process of encoding mechanical stimuli to the colorectum by sensory afferents. To fully understand the underlying mechanisms of visceral mechanical neural encoding demands focused attention on the macro- and micro-mechanics of colon tissue. Motivated by biomechanical experiments on the colon and rectum, increasing efforts focus on developing constitutive frameworks to interpret and predictmore »the anisotropic and nonlinear biomechanical behaviors of the multilayered colorectum. We will review the current literature on computational modeling of the colon and rectum as well as the mechanical neural encoding by stretch sensitive afferent endings, and then highlight our recent advances in these areas. Current models provide insight into organ- and tissue-level biomechanics as well as the stretch-sensitive afferent endings of colorectal tissues yet an important challenge in modeling theory remains. The research community has not connected the biomechanical models to those of mechanosensitive nerve endings to create a cohesive multiscale framework for predicting mechanotransduction from organ-level biomechanics.« less
  2. Many lower gastrointestinal diseases are associated with altered mechanical movement and deformation of the large intestine, i.e., the colon and rectum. The leading reason for patients’ visits to gastrointestinal clinics is visceral pain, which is reliably evoked by mechanical distension rather than non-mechanical stimuli such as inflammation or heating. The macroscopic biomechanics of the large intestine were characterized by mechanical tests and the microscopic by imaging the load-bearing constituents, i.e., intestinal collagen and muscle fibers. Regions with high mechanical stresses in the large intestine (submucosa and muscularis propria) coincide with locations of submucosal and myenteric neural plexuses, indicating a functionalmore »interaction between intestinal structural biomechanics and enteric neurons. In this review, we systematically summarized experimental evidence on the macro- and micro-scale biomechanics of the colon and rectum in both health and disease. We reviewed the heterogeneous mechanical properties of the colon and rectum and surveyed the imaging methods applied to characterize collagen fibers in the intestinal wall. We also discussed the presence of extrinsic and intrinsic neural tissues within different layers of the colon and rectum. This review provides a foundation for further advancements in intestinal biomechanics by synergistically studying the interplay between tissue biomechanics and enteric neurons.« less
  3. Accurate characterization of the mechanical properties of the human brain at both microscopic and macroscopic length scales is a critical requirement for modeling of traumatic brain injury and brain folding. To date, most experimental studies that employ classical tension/compression/shear tests report the mechanical properties of the brain averaged over both the gray and white matter within the macroscopic regions of interest. As a result, there is a missing correlation between the independent mechanical properties of the microscopic constituent elements and the composite bulk macroscopic mechanical properties of the tissue. This microstructural computational study aims to inversely predict the hyperelastic mechanicalmore »properties of the axonal fibers and their surrounding extracellular matrix (ECM) from the bulk tissue's mechanical properties. We develop a representative volume element (RVE) model of the bulk tissue consisting of axonal fibers and ECM with the embedded element technique. A multiobjective optimization technique is implemented to calibrate the model and establish the independent mechanical properties of axonal fibers and ECM based on seven previously reported experimental mechanical tests for bulk white matter tissue from the corpus callosum. The result of the study shows that the discrepancy between the reported values for the elastic behavior of white matter in literature stems from the anisotropy of the tissue at the microscale. The shear modulus of the axonal fiber is seven times larger than the ECM, with axonal fibers that also show greater nonlinearity, contrary to the common assumption that both components exhibit identical nonlinear characteristics. Statement of significance The reported mechanical properties of white matter microstructure used in traumatic brain injury or brain mechanics studies vary widely, in some cases by up to two orders of magnitude. Currently, the material parameters of the white matter microstructure are identified by a single loading mode or ultimately two modes of the bulk tissue. The presented material models only define the response of the bulk and homogenized white matter at a macroscopic scale and cannot explicitly capture the connection between the material properties of microstructure and bulk structure. To fill this knowledge gap, our study characterizes the hyperelastic material properties of axonal fibers and ECM using microscale computational modeling and multiobjective optimization. The hyperelastic material properties for axonal fibers and ECM presented in this study are more accurate than previously proposed because they have been optimized using seven or six loading modes of the bulk tissue, which were previously limited to only two of the seven possible loading modes. As such, the predicted values with high accuracy could be used in various computational modeling studies. The systematic characterization of the material properties of the human brain tissue at both macro- and microscales will lead to more accurate computational predictions, which will enable a better understanding of injury criteria, and has a positive impact on the improved development of smart protection systems, and more accurate prediction of brain development and disease progression.« less
  4. 3D woven composites are well known for their high strength, dimensional stability, delamination, and impact resistance. They are often used in aerospace, energy, and automotive industries where material parts can experience harsh service conditions including substantial variations in temperature. This may lead to significant thermal deformations and thermally-induced stresses in the material. Additionally, 3D woven composites are often produced using resin transfer molding (RTM) technique which involves curing the epoxy resin at elevated temperatures leading to accumulation of the processing-induced residual stress. Thus, understanding of effective thermal behavior of 3D woven composites is essential for their successful design and service.more »In this paper, the effective thermal properties of 3D woven carbon-epoxy composite materials are estimated using mesoscale finite element models previously developed for evaluation of the manufacturing-induced residual stresses. We determine effective coefficients of thermal expansion (CTEs) of the composites in terms of the known thermal and mechanical properties of epoxy resin and carbon fibers. We investigate how temperature sensitivity of the thermal and mechanical properties of the epoxy influences the overall thermal properties of the composite. The simulations are performed for different composite reinforcement morphologies including ply-to-ply and orthogonal. It is shown that even linear dependence of epoxy’s stiffness and CTE on temperature results in a nonlinear dependence on temperature of the overall composite’s CTE.« less
  5. A comprehensive understanding of multiscale and multiphasic intervertebral disc mechanics is crucial for designing advanced tissue engineered structures aiming to recapitulate native tissue behavior. The bovine caudal disc is a commonly used human disc analog due to its availability, large disc height and area, and similarities in biochemical and mechanical properties to the human disc. Because of challenges in directly measuring subtissue-level mechanics, such as in situ fiber mechanics, finite element models have been widely employed in spinal biomechanics research. However, many previous models use homogenization theory and describe each model element as a homogenized combination of fibers and themore »extrafibrillar matrix while ignoring the role of water content or osmotic behavior. Thus, these models are limited in their ability in investigating subtissue-level mechanics and stress-bearing mechanisms through fluid pressure. The objective of this study was to develop and validate a structure-based bovine caudal disc model, and to evaluate multiscale and multiphasic intervertebral disc mechanics under different loading conditions and with degeneration. The structure-based model was developed based on native disc structure, where fibers and matrix in the annulus fibrosus were described as distinct materials occupying separate volumes. Model parameters were directly obtained from experimental studies without calibration. Under the multiscale validation framework, the model was validated across the joint-, tissue-, and subtissue-levels. Our model accurately predicted multiscale disc responses for 15 of 16 cases, emphasizing the accuracy of the model, as well as the effectiveness and robustness of the multiscale structure-based modeling-validation framework. The model also demonstrated the rim as a weak link for disc failure, highlighting the importance of keeping the cartilage endplate intact when evaluating disc failure mechanisms in vitro . Importantly, results from this study elucidated important fluid-based load-bearing mechanisms and fiber-matrix interactions that are important for understanding disease progression and regeneration in intervertebral discs. In conclusion, the methods presented in this study can be used in conjunction with experimental work to simultaneously investigate disc joint-, tissue-, and subtissue-level mechanics with degeneration, disease, and injury.« less