skip to main content


Title: High conductivity n-Al 0.6 Ga 0.4 N by ammonia-assisted molecular beam epitaxy for buried tunnel junctions in UV emitters

Highly doped n-Al0.6Ga0.4N can be used to form tunnel junctions (TJs) on deep ultraviolet (UVC) LEDs and markedly increase the light extraction efficiency (LEE) compared to the use of p-GaN/p-AlGaN. High quality Al0.6Ga0.4N was grown by NH3-assisted molecular beam epitaxy (NH3MBE) on top of AlN on SiC substrate. The films were crack free under scanning electron microscope (SEM) for the thickness investigated (up to 1 µm). X-ray diffraction reciprocal space map scan was used to determine the Al composition and the result is in close agreement with atom probe tomography (APT) measurements. By varying the growth parameters including growth rate, and Si cell temperature, n-Al0.6Ga0.4N with an electron density of 4×1019/cm3and a resistivity of 3 mΩ·cm was achieved. SIMS measurement shows that a high Si doping level up to 2×1020/cm3can be realized using a Si cell temperature of 1450 °C and a growth rate of 210 nm/hr. Using a vanadium-based annealed contact, ohmic contact with a specific resistance of 10−6Ω·cm2was achieved as determined by circular transmission line measurement (CTLM). Finally, the n-type AlGaN regrowth was done on MOCVD grown UVC LEDs to form UVC TJ LED. The sample was processed into thin film flip chip (TFFC) configuration. The emission wavelength is around 278 nm and the excess voltage of processed UV LED is around 4.1 V.

 
more » « less
PAR ID:
10302928
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
29
Issue:
25
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 40781
Size(s):
Article No. 40781
Sponsoring Org:
National Science Foundation
More Like this
  1. The ultra-wide bandgap of Al-rich AlGaN is expected to support a significantly larger breakdown field compared to GaN, but the reported performance thus far has been limited by the use of foreign substrates. In this Letter, the material and electrical properties of Al 0.85 Ga 0.15 N/Al 0.6 Ga 0.4 N high electron mobility transistors (HEMT) grown on a 2-in. single crystal AlN substrate are investigated, and it is demonstrated that native AlN substrates unlock the potential for Al-rich AlGaN to sustain large fields in such devices. We further study how Ohmic contacts made directly to a Si-doped channel layer reduce the knee voltage and increase the output current density. High-quality AlGaN growth is confirmed via scanning transmission electron microscopy, which also reveals the absence of metal penetration at the Ohmic contact interface and is in contrast to established GaN HEMT technology. Two-terminal mesa breakdown characteristics with 1.3  μm separation possess a record-high breakdown field strength of ∼11.5 MV/cm for an undoped Al 0.6 Ga 0.4 N-channel layer. The breakdown voltages for three-terminal devices measured with gate-drain distances of 4 and 9  μm are 850 and 1500 V, respectively. 
    more » « less
  2. A top-illuminated deep-ultraviolet Al0.6Ga0.4N p-i-n avalanche photodiode (APD) structure was designed and grown by metalorganic chemical vapor deposition on an AlN bulk substrate and on two different quality AlN/sapphire templates, and APDs were fabricated and tested. The APD devices with a circular diameter of 20  μm have demonstrated a distinctive reverse-bias breakdown behavior. The reverse breakdown voltage of the APDs is approximately −140 V, which corresponds to a breakdown electric field of 6–6.2 MV/cm for the Al0.6Ga0.4N material as estimated by Silvaco TCAD simulation. The APDs grown on the AlN bulk substrate show the lowest leakage current density of <1 × 10−8 A/cm2(at low reverse bias) compared to that of the devices grown on the AlN templates. From the photocurrent measurement, a maximum gain (current limited) of 1.2 × 104is calculated. The average temperature coefficients of the breakdown voltage are negative for APD devices fabricated from both the AlN bulk substrate and the AlN templates, but these data show that the coefficient is the least negative for the APD devices grown on the low-dislocation-density AlN bulk substrate.

     
    more » « less
  3. Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.

     
    more » « less
  4. We report on the absence of strain relaxation mechanism in Al 0.6 Ga 0.4 N epilayers grown on (0001) AlN substrates for thickness as large as 3.5  μm, three-orders of magnitude beyond the Matthews–Blakeslee critical thickness for the formation of misfit dislocations (MDs). A steady-state compressive stress of 3–4 GPa was observed throughout the AlGaN growth leading to a large lattice bow (a radius of curvature of 0.5 m −1 ) for the thickest sample. Despite the large lattice mismatch-induced strain energy, the epilayers exhibited a smooth and crack-free surface morphology. These results point to the presence of a large barrier for nucleation of MDs in Al-rich AlGaN epilayers. Compositionally graded AlGaN layers were investigated as potential strain relief layers by the intentional introduction of MDs. While the graded layers abetted MD formation, the inadequate length of these MDs correlated with insignificant strain relaxation. This study emphasizes the importance of developing strain management strategies for the implementation of the single-crystal AlN substrate platform for III-nitride deep-UV optoelectronics and power electronics. 
    more » « less
  5. AlGaN-based germicidal UV LEDs show promise in fighting the COVID-19 pandemic through disinfection of air, water, and surfaces. We report UV LEDs grown by MOCVD on SiC substrates, fabricated into thin-film flip chip devices. Replacing theuniformp-AlxGa1-xN layer (x = 0.2) with ashort-period-superlatticeof alternating (x = 0.1 and 0.8) Al-composition improved EQE from 1.3% to 2.7% (3.2% with encapsulation) at 20 A/cm2. Peak EQE and WPE values of 4.8% and 2.8% (287 nm) were measured at current densities below 2 A/cm2, and maximum output power of 7.4 mW (76 mW/mm2) was achieved at 284 nm. Further WPE improvements are expected with both superlattice and uniform layer optimization, improved p-contact metallization, and active region optimization.

     
    more » « less