skip to main content


Title: Formalizing Distribution Inference Risks
Property inference attacks reveal statistical properties about a training set but are difficult to distinguish from the primary purposes of statistical machine learning, which is to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.’s membership inference framework, we propose a formal and generic definition of property inference attacks. The proposed notion describes attacks that can distinguish between possible training distributions, extending beyond previous property inference attacks that infer the ratio of a particular type of data in the training data set. In this paper, we show how our definition captures previous property inference attacks as well as a new attack that reveals the average degree of nodes of a training graph and report on experiments giving insight into the potential risks of property inference attacks.  more » « less
Award ID(s):
1717950
NSF-PAR ID:
10302952
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Workshop on Theory and Practice of Differential Privacy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Property inference attacks reveal statistical properties about a training set but are difficult to distinguish from the primary purposes of statistical machine learning, which is to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.’s membership inference framework, we propose a formal and generic definition of property inference attacks. The proposed notion describes attacks that can distinguish between possible training distributions, extending beyond previous property inference attacks that infer the ratio of a particular type of data in the training data set. In this paper, we show how our definition captures previous property inference attacks as well as a new attack that reveals the average degree of nodes of a training graph and report on experiments giving insight into the potential risks of property inference attacks. 
    more » « less
  2. Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning—namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.’s membership inference framework, we propose a formal definition of distribution inference attacks that is general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based property inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of a training graph. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks. 
    more » « less
  3. Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning—namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.’s membership inference framework, we propose a formal definition of distribution inference attacks general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of training graphs. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks.

     
    more » « less
  4. Abstract—Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e. probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning. We use this framework to (1) provide a unifying structure for definitions of inference risks, (2) formally establish known relations among definitions, and (3) to uncover hitherto unknown relations that would have been difficult to spot otherwise. Index Terms—privacy, machine learning, differential privacy, membership inference, attribute inference, property inference 
    more » « less
  5. Abstract—A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary’s knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. I 
    more » « less