skip to main content


Title: Fossils constrain biogeographical history in a clade of flattened spiders with transcontinental distribution
Abstract Aim

Fossil data may be crucial to infer biogeographical history, especially in taxa with tropical trans‐Pacific distributions. Here, we use extinct and extant trochanteriid flattened spiders to test hypotheses that could explain its trans‐Pacific disjunct distribution, including a Boreotropical origin with a North Atlantic dispersal, an African origin with South Atlantic dispersal and an Eurasian origin with Bering Bridge route.

Location

World‐wide.

Taxon

Trochanteriidae,PlatorDoliomalusVectius(PDV) clade.

Methods

MicroCT was used to collect morphological data from an undescribed Baltic amber fossil. These data were used with additional fossils and extant species in a total‐evidence, tip‐dated phylogenetic analysis. We tested different scenarios using constrained dispersal matrices in a Bayesian approach. An analysis with fossils pruned was also performed to explore how lack of fossil data might impact inferences of biogeographical process.

Results

The phylogenetic analyses allowed us to place the new fossil in the genusPlator. Analyses without fossils suggest an African origin with a dispersal to Asia from India and a South Atlantic dispersal to South America. When fossils are included, hypothesis‐testing rejects this scenario and equally supports a Boreotropical and an Afro‐European origin with a South Atlantic route and a dispersal to Asia from Europe.

Main conclusions

Biogeographical inferences of disjunctly distributed taxa should be interpreted with caution when fossils are not included. Although one alternative hypothesis was not completely rejected, results show that the Boreotropical hypothesis for the PDV clade could be a robust explanation for its actual distribution. This hypothesis is mostly overlooked in animal taxa and rigorous tests with other taxa with similar distributions may reveal that a Boreotropical origin is common. We discuss methodological approaches that could improve biogeographical tests using fossils as terminals.

 
more » « less
NSF-PAR ID:
10302989
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
48
Issue:
12
ISSN:
0305-0270
Page Range / eLocation ID:
p. 3032-3046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginningc. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (PycnaAmyot & Audinet‐Serville,YangaDistant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genusPlatypleurais recovered as polyphyletic, withPlatypleura signiferaWalker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a newPlatypleuraconcept is proposed with the synonymization ofAzanicadaVilletsyn.n.The generaOrapaDistant andHamzaDistant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapinisyn.n. is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.

     
    more » « less
  2. Abstract Aim

    We sought to illuminate the history of the arachnid orders Schizomida and Uropygi, neither of which have previously been subjected to global molecular phylogenetic and biogeographical analyses.

    Location

    Specimens used in this study were collected in all major tropical and subtropical areas where they are presently found, including the Americas, Africa, Australia and the Indo‐Pacific region.

    Methods

    From field‐collected specimens, we sequenced two nuclear and two mitochondrial markers, combined these with publicly available data, and conducted multi‐gene phylogenetic analyses on 240 Schizomida, 24 Uropygi and 12 other arachnid outgroups. Schizomid specimens included one specimen from the small family Protoschizomidae; other schizomid specimens were in Hubbardiidae, subfamily Hubbardiinae, which holds 289 of the order's 305 named species. We inferred ancestral areas using the Dispersal‐Extinction‐Cladogenesis model of range evolution, and we used fossil calibrations to estimate divergence times.

    Results

    We recovered monophyletic Schizomida and Uropygi as each other's sister group, forming the clade Thelyphonida, and terminals from the New World were usually positioned as the earliest diverging lineages. The ancestral area for schizomids reconstructed unambiguously to the region comprised of Mexico, Southern California and Florida (the xeric New World subtropics). Optimal trees suggested a single colonization of the Indo‐Pacific in both orders, although this did not receive bootstrap support. Molecular dating gave an Upper Carboniferous origin for each order, and a mid‐Cretaceous expansion of Schizomida, including the origin and initial diversification of those in the Indo‐Pacific.

    Main conclusions

    Ancestral area reconstructions, molecular dating and fossil evidence all support an Upper Carboniferous, tropical Pangean origin for Thelyphonida, Schizomida and perhaps Uropygi. Much of this region became unsuitable habitat for these arachnids during the breakup of Pangea, but they persisted in the area that is now Meso‐ and South America. From there they then expanded to the Indo‐Pacific, where schizomids today display an idiosyncratic combination of microendemism and long‐range dispersal.

     
    more » « less
  3. Disjunct, pantropical distributions are a common pattern among avian lineages, but disentangling multiple scenarios that can produce them requires accurate estimates of historical relationships and timescales. Here, we clarify the biogeographical history of the pantropical avian family of trogons (Trogonidae) by re‐examining their phylogenetic relationships and divergence times with genome‐scale data. We estimated trogon phylogeny by analysing thousands of ultraconserved element (UCE) loci from all extant trogon genera with concatenation and coalescent approaches. We then estimated a time frame for trogon diversification using MCMCTree and fossil calibrations, after which we performed ancestral area estimation using BioGeoBEARS. We recovered the first well‐resolved hypothesis of relationships among trogon genera. Trogons comprise three clades, each confined to one of three biogeographical regions: Africa, Asia and the Neotropics, with the African clade sister to the others. These clades diverged rapidly during the Oligocene‐Miocene transition. Our biogeographical analyses identify a Eurasian origin for stem trogons and a crown clade arising from ancestors broadly distributed across Laurasia and Africa. The pantropical ranges of trogons are relicts of a broader Afro‐Laurasian distribution that was fragmented across Africa, Asia and the New World in near coincident fashion during the Oligocene‐Miocene transition by global cooling and changing habitats along the Beringian land bridge and North Africa.

     
    more » « less
  4. Abstract Aim

    The “sexy shrimp”Thor amboinensisis currently considered a single circumtropical species. However, the tropical oceans are partitioned by hard and soft barriers to dispersal, providing ample opportunity for allopatric speciation. Herein, we test the null hypothesis thatT. amboinensisis a single global species, reconstruct its global biogeographical history, and comment on population‐level patterns throughout the Tropical Western Atlantic.

    Location

    Coral reefs in all tropical oceans.

    Methods

    Specimens ofThor amboinensiswere obtained through field collection and museum holdings. We used one mitochondrial (COI) and two nuclear (NaK, enolase) gene fragments for global species delimitation and phylogenetic analyses (n = 83 individuals, 30 sample localities), while phylogeographical reconstruction in theTWAwas based onCOIonly (n = 303 individuals, 10 sample localities).

    Results

    We found evidence for at least five cryptic lineages (9%–22%COIpairwise sequence divergence): four in the Indo‐West Pacific and one in the Tropical Western Atlantic. Phylogenetic reconstruction revealed that endemic lineages from Japan and the South Central Pacific are more closely related to the Tropical Western Atlantic lineage than to a co‐occurring lineage that is widespread throughout the Indo‐West Pacific. Concatenated and species tree phylogenetic analyses differ in the placement of an endemic Red Sea lineage and suggest alternate dispersal pathways into the Atlantic. Phylogeographical reconstruction throughout the Tropical Western Atlantic reveals little genetic structure over more than 3,000 km.

    Main conclusions

    Thor amboinensisis a species complex that has undergone a series of allopatric speciation events and whose members are in secondary contact in the Indo‐West Pacific. Nuclear‐ and mitochondrial‐ gene phylogenies show evidence of introgression between lineages inferred to have been separated more than 20 Ma. Phylogenetic discordance between multi‐locus analyses suggest thatT. amboinensisoriginated in the Tethys sea and dispersed into the Atlantic and Indo‐West Pacific through the Tethys seaway or, alternatively, originated in the Indo‐West Pacific and dispersed into the Atlantic around South Africa. Population‐level patterns in the Caribbean indicate extensive gene flow across the region.

     
    more » « less
  5. Abstract

    Osteological correlates preserve more readily than their soft tissue counterparts in the fossil record; therefore, they can more often provide insight into the soft tissue anatomy of the organism. These insights can in turn elucidate the biology of these extinct organisms. In this study, we reconstruct the pelvic girdle and hind limb musculature of the giant titanosaurian sauropodDreadnoughtus schranibased on observations of osteological correlates and Extant Phylogenetic Bracket comparisons. Recovered fossils ofDreadnoughtusexhibit remarkably well‐preserved, well‐developed, and extensive muscle scars. Furthermore, this taxon is significantly larger bodied than any titanosaurian for which a myological reconstruction has previously been performed, rendering this contribution highly informative for the group. All 20 of the muscles investigated in this study are sufficiently well supported to enable reconstruction of at least one division, including reconstruction of the M. ischiocaudalis for the first time in a sauropod dinosaur. In total, 34 osteological correlates were identified on the pelvic girdle and hind limb remains ofDreadnoughtus, allowing the reconstruction of 14 muscles on the basis of Level I or Level II inferences (i.e., not Level I' or Level II' inferences). Comparisons among titanosaurians suggest widespread myological variation, yet potential phylogenetic and other paleobiologic patterns are often obscured by fragmentary preservation, infrequent myological studies, and lack of consensus on the phylogenetic placement of many taxa. However, a ventrolateral accessory process is present on the preacetabular lobe of the ilium in all of the largest titanosauriforms that preserve this skeletal element, suggesting that the presence of this process (representing the origin of the M. puboischiofemoralis internus part II) may be associated with extreme body size. By identifying such myological patterns among titanosauriforms, we can begin to address specific evolutionary and biomechanical questions related to their skeletal anatomy, how they were capable of leaving wide‐gauge trackways, and resulting locomotor attributes unique to this clade.

     
    more » « less