skip to main content

Title: Lake basin water level and ground temperature data in Arctic Alaska, 2019-2021
Abstract
Lakes are abundant features on coastal plains of the Arctic and most are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic natureMore>>
Creator(s):
Publisher:
NSF Arctic Data Center
Publication Year:
NSF-PAR ID:
10303015
Subject(s):
Alaska lakes wetlands permafrost temperature hydrology
Format(s):
text/xml
Award ID(s):
1806213
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Assessment of lakes for their future potential to drain relied on the 2002/03 airborne Interferometric Synthetic Aperture Radar (IFSAR) Digital Surface Model (DSM) data for the western Arctic Coastal Plain in northern Alaska. Lakes were extracted from the IfSAR DSM using a slope derivative and manual correction (Jones et al., 2017). The vertical uncertainty for correctly detecting lake-based drainage gradients with the IfSAR DSM was defined by comparing surface elevation differences of several overlapping DSM tile edges. This comparison showed standard deviations of elevation between overlapping IfSAR tiles ranging from 0.0 to 0.6 meters (m). Thus, we chose a minimum height difference of 0.6 m to represent a detectable elevation gradient adjacent to a lake as being most likely to contribute to a rapid drainage event. This value is also in agreement with field verified estimates of the relative vertical accuracy (~0.5 m) of the DSM dataset around Utqiaġvik (formerly Barrow) (Manley et al., 2005) and the stated vertical RMSE (~1.0 m) of the DSM data (Intermap, 2010). Development of the potential lake drainage dataset involved several processing steps. First, lakes were classified as potential future drainage candidates if the difference between the elevation of the lake surface andMore>>
  2. Abstract

    Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes drainingmore »year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

    « less
  3. Abstract. Northwestern Alaska has been highly affected by changing climatic patternswith new temperature and precipitation maxima over the recent years. Inparticular, the Baldwin and northern Seward peninsulas are characterized byan abundance of thermokarst lakes that are highly dynamic and prone to lakedrainage like many other regions at the southern margins of continuouspermafrost. We used Sentinel-1 synthetic aperture radar (SAR) and PlanetCubeSat optical remote sensing data to analyze recently observed widespreadlake drainage. We then used synoptic weather data, climate model outputs andlake ice growth simulations to analyze potential drivers and future pathwaysof lake drainage in this region. Following the warmest and wettest winter onrecord in 2017/2018, 192 lakes were identified as having completely orpartially drained by early summer 2018, which exceeded the average drainagerate by a factor of ∼ 10 and doubled the rates of the previousextreme lake drainage years of 2005 and 2006. The combination of abundantrain- and snowfall and extremely warm mean annual air temperatures (MAATs),close to 0 ∘C, may have led to the destabilization of permafrostaround the lake margins. Rapid snow melt and high amounts of excessmeltwater further promoted rapid lateral breaching at lake shores andconsequently sudden drainage of some of the largest lakes of the studyregion that have likelymore »persisted for millennia. We hypothesize that permafrostdestabilization and lake drainage will accelerate and become the dominantdrivers of landscape change in this region. Recent MAATs are already withinthe range of the predictions by the University of Alaska Fairbanks' Scenarios Network for Alaska and Arctic Planning (UAF SNAP) ensemble climate predictions inscenario RCP6.0 for 2100. With MAAT in 2019 just below 0 ∘C at the nearby Kotzebue, Alaska, climate station, permafrost aggradation in drained lake basins will become less likely after drainage, strongly decreasing the potential for freeze-locking carbon sequestered in lake sediments, signifying a prominent regime shift in ice-rich permafrost lowland regions.« less
  4. Nearly 25% of all lakes on earth are located at high latitudes. These lakes are formed by a combination of thermokarst, glacial, and geological processes. Evidence suggests that the origin of periglacial lake formation may be an important factor controlling the likelihood of lakes to drain. However, geospatial data regarding the spatial distribution of these dominant Arctic and subarctic lakes are limited or do not exist. Here, we use lake-specific morphological properties using the Arctic Digital Elevation Model (DEM) and Landsat imagery to develop a Thermokarst lake Settlement Index (TSI), which was used in combination with available geospatial datasets of glacier history and yedoma permafrost extent to classify Arctic and subarctic lakes into Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes, respectively. This lake origin dataset was used to evaluate the influence of lake origin on drainage between 1985 and 2019 in northern Alaska. The lake origin map and lake drainage datasets were synthesized using five-year seamless Landsat ETM+ and OLI image composites. Nearly 35,000 lakes and their properties were characterized from Landsat mosaics using an object-based image analysis. Results indicate that the pattern of lake drainage varied by lake origin, and the proportion of lakes that completely drained (i.e., >60%more »area loss) between 1985 and 2019 in Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes were 12.1, 9.5, 8.7, and 0.0%, respectively. The lakes most vulnerable to draining were small thermokarst (non-yedoma) lakes (12.7%) and large yedoma lakes (12.5%), while the most resilient were large and medium-sized glacial lakes (4.9 and 4.1%) and Maar lakes (0.0%). This analysis provides a simple remote sensing approach to estimate the spatial distribution of dominant lake origins across variable physiography and surficial geology, useful for discriminating between vulnerable versus resilient Arctic and subarctic lakes that are likely to change in warmer and wetter climates.« less
  5. Abstract

    The Arctic is warming at twice the rate of the global mean. This warming could further stimulate methane (CH4) emissions from northern wetlands and enhance the greenhouse impact of this region. Arctic wetlands are extremely heterogeneous in terms of geochemistry, vegetation, microtopography, and hydrology, and therefore CH4fluxes can differ dramatically within the metre scale. Eddy covariance (EC) is one of the most useful methods for estimating CH4fluxes in remote areas over long periods of time. However, when the areas sampled by these EC towers (i.e. tower footprints) are by definition very heterogeneous, due to encompassing a variety of environmental conditions and vegetation types, modelling environmental controls of CH4emissions becomes even more challenging, confounding efforts to reduce uncertainty in baseline CH4emissions from these landscapes. In this study, we evaluated the effect of footprint variability on CH4fluxes from two EC towers located in wetlands on the North Slope of Alaska. The local domain of each of these sites contains well developed polygonal tundra as well as a drained thermokarst lake basin. We found that the spatiotemporal variability of the footprint, has a significant influence on the observed CH4fluxes, contributing between 3% and 33% of the variance, depending on site, time period,more »and modelling method. Multiple indices were used to define spatial heterogeneity, and their explanatory power varied depending on site and season. Overall, the normalised difference water index had the most consistent explanatory power on CH4fluxes, though generally only when used in concert with at least one other spatial index. The spatial bias (defined here as the difference between the mean for the 0.36 km2domain around the tower and the footprint-weighted mean) was between ∣51∣% and ∣18∣% depending on the index. This study highlights the need for footprint modelling to infer the representativeness of the carbon fluxes measured by EC towers in these highly heterogeneous tundra ecosystems, and the need to evaluate spatial variability when upscaling EC site-level data to a larger domain.

    « less