Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrochemical reduction of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels. Next, Imore »
Electrocatalytic Hydrogenation of Furanic Compounds: From Mechanism Study to Paired Electrolyzer Design
Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3].
In my presentation, I will first present our recent mechanistic study of electrocatlytic hydrogenation (ECH) of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels
We further more »
- Award ID(s):
- 1947435
- Publication Date:
- NSF-PAR ID:
- 10303029
- Journal Name:
- 262nd ACS National Meeting
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. Paired electrolysis is an emerging platform for cogenerating high-valued chemicals from both the cathode and anode, potentially powered by renewable electricity from wind or solar sources. By pairing with an anodic biomass oxidation upgrading reaction, the elimination of the sluggish and less valuable water oxidation increases flow cell productivity and efficiency. In this presentation, we report our research progress on paired electrolsysis of HMF to production of higher valued chemicals in electrochemical flow cells. We first prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ~7.5 V to ~2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. Amore »
-
Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. In this respect, a key strategy is the electrocatalytic hydrogenation (ECH) reaction, which is typically paired with the anodic oxygen evolution reaction (OER) with sluggish kinetics, producing O 2 with little value. Here we prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. We then considered the oxidation of HMF to 2,5-furandicarboxylic acid (FDCA) and hydrogen (to water) as more efficient and productive alternatives to the OER. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ∼7.5 V to ∼2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. A combined faradaic efficiency of 163% was obtained for BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction onmore »
-
Organic electrosynthesis is emerging as a cost-effective and environmental-friendly chemical production strategy by utilizing renewable electricity. Paired electrolysis cogenerates valuable chemicals at both electrodes can optimize the energy efficiency and economic feasibility. We report pairing hydrogenation and oxidation of 5-(hydroxymethyl)furfural (HMF) or furfural to desired chemicals at a single electrolysis cell. Electrocatalytic hydrogenation of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) and furfural to furfural alcohol (FA) with high selectivity of >90% can be operated at near-neutral pH on Ag-based and Pb-based catalysts, respectively. In addition, oxidizing HMF to 2,5-furandicarboxylic acid (FDCA) and furfural to furoic acid can both be realized at TEMPO mediated process by using carbon-based catalysts or at Ni-based catalyst in an alkaline medium. Taken together, HMF or furfural can be performed in a single electrolysis cell with a minimized cell voltage only around 1.6 V. Products selectivity and faradaic efficiency are highly related to the reaction conditions, including potential or current density, architectures of the reactor, type of catalysts. By optimizing the single flow reactor, a three-electrode system, two-electrode membrane assembly architecture, and pH-symmetric and pH-asymmetric structure can be designed to reduce the capital expense, minimize required energy, and simplify processing steps. Finally, a complete electrons economy can bemore »
-
Paired electrolysis has been emerged as an electricity-powered platform for converting biorewable feedstock to higher-valued chemicals at both the cathode and anode. In this presentation, we explored paired electrolyzers of different architectures with remarkable performance and stability. We first designed three-electrode flow electrolyzers to pair electrocatalytic hydrogenation of 5-(hydroxymethyl)furfural (HMF) on oxide-derived silver electrode and TEMPO-mediated HMF oxidation on carbon cloth. The paired flow cell achieved a combined faradaic efficiency of 163% to desired 2,5-bis(hydroxymethyl)furan (BHMF) and 2,5-furandicarboxylic acid (FDCA) with a cell potential of ~1.7 V, at the constant current of 10 mA. When the anodic reaction was replaced by hydrogen oxidation, a minimized cell voltage of only ~0.9 V was achieved. We then assmbled a membrane electrode assembly (MEA)-based two-electrode flow cell, which realized a minimized cell potential of only ~1.5 V for a continuous 24 hours paired electrolysis of HMF. Finally, a pH asymmetric architecture was designed to match the optimum reaction conditions and to replace HMF oxidation on a NiFeOOH anode catalyst without a redox mediator. Our recent development of electrochemical-chemical combined reactors for furanic compounds conversion will also be briefly presented.