skip to main content


Title: Excitation of the Madden–Julian Oscillation in Atmospheric Adjustment to Equatorial Heating
Abstract

We study the adjustment of the tropical atmosphere to localized surface heating using a Lagrangian atmospheric model (LAM) that simulates a realistic Madden–Julian oscillation (MJO)—the dominant, eastward-propagating mode of tropical intraseasonal variability modulating atmospheric convection. Idealized warm sea surface temperature (SST) anomalies of different aspect ratios and magnitudes are imposed in the equatorial Indian Ocean during MJO-neutral conditions and then maintained for 15 days. The experiments then continue for several more months. Throughout these experiments, we observe a robust generation of an MJO event, evident in precipitation, velocity, temperature, and moisture fields, which becomes a key element of atmospheric adjustment along with the expected Kelvin and Rossby waves. The MJO circulation pattern gradually builds up during the first week, and then starts to propagate eastward at a speed of 5–7 m s−1. The upper-level quadrupole circulation characteristic of the MJO becomes evident around day 14, with two anticyclonic gyres generated by the Gill-type response to convective heating and two cyclonic gyres forced by the excited Kelvin waves and extratropical Rossby wave trains. A moisture budget analysis shows that the eastward propagation of the MJO is controlled largely by the anomalous advection of moisture and by the residual between anomalous moisture accumulation due to converging winds and precipitation. The initial MJO event is followed by successive secondary events, maintaining the MJO for several more cycles. Thus, this study highlights the fundamental role that the MJO can play in the adjustment of the moist equatorial atmosphere to localized surface heating.

 
more » « less
NSF-PAR ID:
10303131
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
78
Issue:
12
ISSN:
0022-4928
Page Range / eLocation ID:
p. 3933-3950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Madden–Julian Oscillation (MJO) is a large-scale tropical weather system that generates heavy rainfall over the equatorial Indian and western Pacific Oceans on a 40–50 day cycle. Its circulation propagates eastward around the entire world and impacts tropical cyclone genesis, monsoon onset, and mid-latitude flooding. This study examines the mechanism of the MJO in the Lagrangian atmospheric model (LAM), which has been shown to simulate the MJO accurately, and which predicts that MJO circulations will intensify as oceans warm. The LAM MJO’s first baroclinic circulation is projected onto a Kelvin wave leaving a residual that closely resembles a Rossby wave. The contribution of each wave type to moisture and moist enthalpy budgets is assessed. While the vertical advection of moisture by the Kelvin wave accounts for most of the MJO’s precipitation, this wave also exports a large amount of dry static energy, so that in total, it reduces the column integrated moist enthalpy during periods of heavy precipitation. In contrast, the Rossby wave’s horizontal circulation builds up moisture prior to the most intense convection, and its surface wind perturbations enhance evaporation near the center of MJO convection. Surface fluxes associated with the Kelvin wave help to maintain its circulation outside of the MJO’s convectively active region. 
    more » « less
  2. Abstract

    The composite structure of the Madden–Julian oscillation (MJO) has long been known to feature pronounced Rossby gyres in the subtropical upper troposphere, whose existence can be interpreted as the forced response to convective heating anomalies in the presence of a subtropical westerly jet. The question of interest here is whether these forced gyre circulations have any subsequent effects on divergence patterns in the tropics and the Kelvin-mode component of the MJO. A nonlinear spherical shallow water model is used to investigate how the introduction of different background jet profiles affects the model’s steady-state response to an imposed MJO-like stationary thermal forcing. Results show that a stronger jet leads to a stronger Kelvin-mode response in the tropics up to a critical jet speed, along with stronger divergence anomalies in the vicinity of the forcing. To understand this behavior, additional calculations are performed in which a localized vorticity forcing is imposed in the extratropics, without any thermal forcing in the tropics. The response is once again seen to include pronounced equatorial Kelvin waves, provided the jet is of sufficient amplitude. A detailed analysis of the vorticity budget reveals that the zonal-mean zonal wind shear plays a key role in amplifying the Kelvin-mode divergent winds near the equator, with the effects of nonlinearities being of negligible importance. These results help to explain why the MJO tends to be strongest during boreal winter when the Indo-Pacific jet is typically at its strongest.

    Significance Statement

    The MJO is a planetary-scale convectively coupled equatorial disturbance that serves as a primary source of atmospheric predictability on intraseasonal time scales (30–90 days). Due to its dominance and spontaneous recurrence, the MJO has a significant global impact, influencing hurricanes in the tropics, storm tracks, and atmosphere blocking events in the midlatitudes, and even weather systems near the poles. Despite steady improvements in subseasonal-to-seasonal (S2S) forecast models, the MJO prediction skill has still not reached its maximum potential. The root of this challenge is partly due to our lack of understanding of how the MJO interacts with the background mean flow. In this work, we use a simple one-layer atmospheric model with idealized heating and vorticity sources to understand the impact of the subtropical jet on the MJO amplitude and its horizontal structure.

     
    more » « less
  3. The exponential increase in precipitation with increasing column saturation fraction (CSF) is used to investigate the role of moisture in convective coupling. This simple empirical relationship between precipitation and CSF is shown to capture nearly all MJO-related variability in TRMM precipitation, ~80% of equatorial Rossby wave–related variability, and ~75% of east Pacific easterly wave–related variability. In contrast, this empirical relationship only captures roughly half of TRMM precipitation variability associated with Kelvin waves, African easterly waves, and mixed Rossby–gravity waves, suggesting coupling mechanisms other than moisture are playing leading roles in these phenomena. These latter phenomena have strong adiabatically forced vertical motions that could reduce static stability and convective inhibition while simultaneously moistening, creating a more favorable convective environment. Cross-spectra of precipitation and column-integrated dry static energy show enhanced coherence and an out-of-phase relationship in the Kelvin wave, mixed Rossby–gravity wave, and eastward inertio-gravity wave bands, supporting this narrative. The cooperative modulation of precipitation by moisture and temperature anomalies is shown to shorten the convective adjustment time scale (i.e., time scale by which moisture and precipitation are relaxed toward their “background” state) of these phenomena. Speeding the removal of moisture anomalies relative to that of temperature anomalies may allow the latter to assume a more important role in driving moist static energy fluctuations, helping promote the gravity wave character of these phenomena.

     
    more » « less
  4. Abstract

    Convectively coupled waves (CCWs) over the Western Hemisphere are classified based on their governing thermodynamics. It is found that only the tropical depressions (TDs; TD waves) satisfy the criteria necessary to be considered a moisture mode, as in the Rossby-like wave found in an earlier study. In this wave, water vapor fluctuations play a much greater role in the thermodynamics than temperature fluctuations. Only in the eastward-propagating inertio-gravity (EIG) wave does temperature govern the thermodynamics. Temperature and moisture play comparable roles in all the other waves, including the Madden–Julian oscillation over the Western Hemisphere (MJO-W). The moist static energy (MSE) budget of CCWs is investigated by analyzing ERA5 data and data from the 2014/15 observations and modeling of the Green Ocean Amazon (GoAmazon 2014/15) field campaign. Results reveal that vertical advection of MSE acts as a primary driver of the propagation of column MSE in westward inertio-gravity (WIG) wave, Kelvin wave, and MJO-W, while horizontal advection plays a central role in the mixed Rossby gravity (MRG) and TD wave. Results also suggest that cloud radiative heating and the horizontal MSE advection govern the maintenance of most of the CCWs. Major disagreements are found between ERA5 and GoAmazon. In GoAmazon, convection is more tightly coupled to variations in column MSE, and vertical MSE advection plays a more prominent role in the MSE tendency. These results along with substantial budget residuals found in ERA5 data suggest that CCWs over the tropical Western Hemisphere are not represented adequately in the reanalysis.

    Significance Statement

    In comparison to other regions of the globe, the weather systems that affect precipitation in the tropical Western Hemisphere have received little attention. In this study, we investigate the structure, propagation, and thermodynamics of convectively coupled waves that impact precipitation in this region. We found that slowly evolving tropical systems are “moisture modes,” i.e., moving regions of high humidity and precipitation that are maintained by interactions between clouds and radiation. The faster waves are systems that exhibit relatively larger fluctuations in temperature. Vertical motions are more important for the movement of rainfall in these waves. Last, we found that reanalysis and observations disagree over the importance of different processes in the waves that occurred over the Amazon region, hinting at potential deficiencies on how the reanalysis represents clouds in this region.

     
    more » « less
  5. Abstract

    Westerly wind bursts (WWBs) are brief, anomalously westerly winds in the tropical Pacific that play a role in the dynamics of ENSO through their forcing of ocean Kelvin waves. They have been associated with atmospheric phenomena such as tropical cyclones, the MJO, and convectively coupled Rossby waves, yet their basic mechanism is not yet well understood. We study WWBs using an aquaplanet general circulation model, and find that eastward-propagating convective heating plays a key role in the generation of model WWBs, consistent with previous studies. Furthermore, wind-induced surface heat exchange (WISHE) acts on a short time scale of about two days to dramatically amplify the model WWB winds near the peak of the event. On the other hand, it is found that radiation feedbacks (i.e., changes in the net radiative anomalies accompanying westerly wind bursts) are not essential for the development of WWBs, and act as a weak negative feedback on WWBs and their associated convection. Similarly, sensible surface heat flux anomalies are not found to have an effect on the development of model WWBs.

     
    more » « less