The light-emitting diodes (LEDs) used in indoor testing of perovskite solar cells do not expose them to the levels of ultraviolet (UV) radiation that they would receive in actual outdoor use. We report degradation mechanisms of p-i-n–structured perovskite solar cells under unfiltered sunlight and with LEDs. Weak chemical bonding between perovskites and polymer hole-transporting materials (HTMs) and transparent conducting oxides (TCOs) dominate the accelerated A-site cation migration, rather than direct degradation of HTMs. An aromatic phosphonic acid, [2-(9-ethyl-9H-carbazol-3-yl)ethyl]phosphonic acid (EtCz3EPA), enhanced bonding at the perovskite/HTM/TCO region with a phosphonic acid group bonded to TCOs and a nitrogen group interacting with lead in perovskites. A hybrid HTM of EtCz3EPA with strong hole-extraction polymers retained high efficiency and improved the UV stability of perovskite devices, and a champion perovskite minimodule—independently measured by the Perovskite PV Accelerator for Commercializing Technologies (PACT) center—retained operational efficiency of >16% after 29 weeks of outdoor testing.
more »
« less
Operational stability of perovskite light emitting diodes
Abstract Organometal halide perovskite light emitting diodes (LEDs) have attracted a lot of attention in recent years, owing to the rapid progress in device efficiency. However, their short operational lifetime severely impedes the practical uses of these devices. The operating stability of perovskite LEDs are due to degradation due to ambient environment and degradation during operation. The former can be suppressed by encapsulation while the latter one is the intrinsic degradation due to the electrochemical stability of the perovskite materials. In addition, perovskites also suffer from ion migration which is a major degradation mechanism in perovskite LEDs. In this review, we specifically focus on the operational stability of perovskite LEDs. The review is divided into two parts: the first part contains a summary of various degradation mechanisms and some insight on the degradation behavior and the second part is the strategies how to improve the operational stability, especially the strategies to suppress ion migration. Based on the current advances in the literature, we finally present our perspectives to improve the device stability.
more »
« less
- Award ID(s):
- 1729383
- PAR ID:
- 10303135
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Materials
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2515-7639
- Page Range / eLocation ID:
- Article No. 012002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Organic‐inorganic hybrid perovskite solar cells are susceptible to multiple influencing factors such as moisture, oxygen, heat stress, ion migration. Given the complex practical working conditions for solar cells, a fundamental question is how different failure mechanisms collaborate and substantially accelerate the device degradation. In this study, it is found that ion migration can accelerate the reaction between oxygen and methylammonium lead iodide perovskite in light conditions. This is suggested since regions with local electric fields suffer from more severe decomposition. Here it is reported that cesium ions (Cs+) incorporated in perovskite lattice, with a moderate doping concentration (e.g. 5%), can function as stabilizers to efficiently interrupt such a synergistic effect between oxygen induced degradation and ion migration while retaining the high performance of perovskite solar cells. Both experimental and theoretical results suggest that 5% Cs+ions incorporation simultaneously suppresses the formation of reactive superoxide ions () as well as ion migration in perovskites by forming additional energy barriers. This A‐site cations engineering is also a promising strategy to circumvent the detrimental effect of oxygen molecules in FA‐based perovskites, which is important for developing high‐efficiency perovskite solar cells with enhanced stability.more » « less
-
Abstract Hybrid organic–inorganic perovskite light‐emitting devices (LEDs) have recently shown the characteristic dynamical behavior of light‐emitting electrochemical cells (LECs), with intrinsic ionic migration creating an electric double layer and internal p‐i‐n structure and by accumulation of ions at interfaces. Therefore, the development of perovskite light‐emitting and photovoltaic devices based on the concepts of LEC operation attracts much attention and clarifies general physical processes in perovskites. Here, new directions that can further improve perovskite optoelectronic devices and extend their functionalities using additive mobile ions are overviewed: 1) enhancing single‐layer LECs with lithium additives for increased efficiency and longer lifetime; 2) facilitating ionic motion in three‐layer perovskite LECs to create dual‐functional devices, operating as both LEC and solar cells; and 3) creating truly ambipolar LEC devices with carbon nanotubes as stable electrodes that leverage ionic doping. Taken together, the use of these approaches provides a strategy to create efficient, stable, and bright LECs, which use advantages of both LED and LEC operation. It is discussed that how the LEC behavior in perovskite LEDs can be further improved to address the long‐term challenges in perovskite optoelectronics, such as stability, through approaches like ionically reconfigurable host/guest systems.more » « less
-
Abstract Perovskite light‐emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi‐2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light‐emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi‐2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi‐2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi‐2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m−2and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.more » « less
-
Hybrid halide perovskite solar cells have drawn widespread attention with the achievement of high power conversion efficiencies. However, poor stability remains the greatest barrier preventing their commercialization. Performance degradation and recovery have a complicated dependence on the environment and a dependence on the applied bias, which affects ion migration. Herein, solar cells with an organic hole transport layer and cells with an inorganic hole transport layer are compared. A type of degradation of the organic transport layer is examined, which is reversible by applying a forward bias soak, and how the degradation arises from ion migration mechanisms is explained. Experimental current–voltage and capacitance transient measurements are conducted as a function of temperature. The resulting S‐kink and positive capacitance decay are explained in terms of the modeled effects of a changing ion density at the hole transport layer. An irreversible degradation is found upon heating to more than 100 °C. On the contrary, the inorganic hole transport layer is found to eliminate the observable effects of ion migration, even at elevated temperatures, so long as air exposure is avoided.more » « less
An official website of the United States government
