skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate
Abstract Seasonally dry tropical forests (SDTFs) account for one-third of the interannual variability of global net primary productive (NPP). Large-scale shifts in dry tropical forest structure may thus significantly affect global CO2fluxes in ways that are not fully accounted for in current projections. This study quantifies how changing climate might reshape one of the largest SDTFs in the world, the Caatinga region of northeast Brazil. We combine historical data and future climate projections under different representative concentration pathways (RCPs), together with spatially explicit aboveground biomass estimates to establish relationships between climate and vegetation distribution. We find that physiognomies, aboveground biomass, and climate are closely related in the Caatinga—and that the region’s bioclimatic envelope is shifting rapidly. From 2008–2017, more than 90% of the region has shifted to a dryer climate space compared to the reference period 1950–1979. An ensemble of global climate models (based on IPCC AR5) indicates that by the end of the 21st century the driest Caatinga physiognomies (thorn woodlands to non-vegetated areas) could expand from 55% to 78% (RCP 2.6) or as much as 87% (RCP8.5) of the region. Those changes would correspond to a decrease of 30%–50% of the equilibrium aboveground biomass by the end of the century (RCP 2.6 and RCP8.5, respectively). Our results are consistent with historic vegetation shifts reported for other SDTFs. Projected changes for the Caatinga would have large-scale impacts on the region’s biomass and biodiversity, underscoring the importance of SDTFs for the global carbon budget. Understanding such changes as presented in this study will be useful for regional planning and could help mitigate their negative social impacts.  more » « less
Award ID(s):
1739724
PAR ID:
10303187
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 034053
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ocean dynamic sea level (DSL) change is a key driver of relative sea level (RSL) change. Projections of DSL change are generally obtained from simulations using atmosphere‐ocean general circulation models (GCMs). Here, we develop a two‐layer climate emulator to interpolate between emission scenarios simulated with GCMs and extend projections beyond the time horizon of available simulations. This emulator captures the evolution of DSL changes in corresponding GCMs, especially over middle and low latitudes. Compared with an emulator using univariate pattern scaling, the two‐layer emulator more accurately reflects GCM behavior and captures non‐linearities and non‐stationarity in the relationship between DSL and global‐mean warming, with a reduction in global‐averaged error during 2271–2290 of 36%, 24%, and 34% in RCP2.6, RCP4.5, and RCP8.5, respectively. Using the emulator, we develop a probabilistic ensemble of DSL projections through 2300 for four scenarios: Representative Concentration Pathway (RCP) 2.6, RCP 4.5, RCP 8.5, and Shared Socioeconomic Pathway (SSP) 3–7.0. The magnitude and uncertainty of projected DSL changes decrease from the high‐to the low‐emission scenarios, indicating a reduced DSL rise hazard in low‐ and moderate‐emission scenarios (RCP2.6 and RCP4.5) compared to the high‐emission scenarios (SSP3‐7.0 and RCP8.5). 
    more » « less
  2. Abstract While spatial heterogeneity of riverine nitrogen (N) loading is predominantly driven by the magnitude of basin‐wide anthropogenic N input, the temporal dynamics of N loading are closely related to the amount and timing of precipitation. However, existing studies do not disentangle the contributions of heavy precipitation versus non‐heavy precipitation predicted by future climate scenarios. Here, we explore the potential responses of N loading from the Mississippi Atchafalaya River Basin to precipitation changes using a well‐calibrated hydro‐ecological model and Coupled Model Intercomparison Project Phase 5 climate projections under two representative concentration pathway (RCP) scenarios. With present agricultural production and management practices, N loading could increase up to 30% by the end of the 21st century under future climate scenarios, half of which would be driven by heavy precipitation. Particularly, the RCP8.5 scenario, in which heavy precipitation and drought events become more frequent, would increase N loading disproportionately to projected increases in river discharge. N loading in spring would contribute 41% and 51% of annual N loading increase under the RCP4.5 and RCP8.5 scenarios, respectively, most of which is related to higher N yield due to increases in heavy precipitation. Anthropogenic N inputs would be increasingly susceptible to leaching loss in the Midwest and the Mississippi Alluvial Plain regions. Our results imply that future climate change alone, including more frequent and intense precipitation extremes, would increase N loading and intensify the eutrophication of the Gulf of Mexico over this coming century. More effective nutrient management interventions are needed to reverse this trend. 
    more » « less
  3. Abstract This article investigates the effect of urban expansion and climate change impacts on heat stress (HS) for Arizona's (AZ; USA) two largest urban agglomerations, the Phoenix and Tucson metropolitan areas, under relatively dry and moist warm conditions with the Weather Research and Forecasting (WRF)‐urban modeling system. We dynamically downscale two contemporary summers, one dry and one moist, relatively to their respective seasonal‐mean specific humidity across AZ. Urban expansion impacts on HS are assessed by performing two identical simulations for each contemporary summer using different land use‐land cover representations: one simulation with the current urban landscape, and one simulation replaces the urban cover with the region's most representative MODIS vegetation type. Climate change impacts on HS are evaluated by performing four additional future simulations, two via dynamical downscaling of relatively dry conditions (one summer under the RCP8.5 and one summer under the RCP4.5 emissions pathways) and two of relatively moist conditions (one summer for each RCP pathway). The selection of future summers is based on their respective seasonal‐mean specific humidity across AZ from an end‐of‐century analysis of 2086–2100. We characterize impacts on HS by examining changes in near‐surface air temperature, Heat Index (HI), and the Universal Thermal Climate Index (UTCI) across urban areas under dry and moist warm conditions. Our results demonstrate that climate change impacts on HS are not well captured by examining only the projected changes in air temperature and are dependent on the bioclimate index considered. Additionally, we apply a new human heat balance (HHB) approach to evaluate the number of hours per day that an acclimatized and non‐acclimatized person would experience uncompensable HS and compare these results (with the number of hours per day) that we obtain when the HI and UTCI surpass commonly used thresholds considered “dangerous” and of “extreme heat stress”, respectively. The HI and UTCI overestimate the number of hours per day that a healthy, acclimatized person would experience uncompensable HS and underestimate dangerous HS for a non‐acclimatized person under both dry and moist conditions, emphasizing that standard metrics may not produce the most informative physiological estimates of HS. 
    more » « less
  4. Global aridification is projected to intensify. Yet, our knowledge of its potential impacts on species ranges remains limited. Here, we investigate global aridity velocity and its overlap with three sectors (natural protected areas, agricultural areas, and urban areas) and terrestrial biodiversity in historical (1979 through 2016) and future periods (2050 through 2099), with and without considering vegetation physiological response to rising CO2. Both agricultural and urban areas showed a mean drying velocity in history, although the concurrent global aridity velocity was on average +0.05/+0.20 km/yr−1(no CO2effects/with CO2effects; “+” denoting wetting). Moreover, in drylands, the shifts of vegetation greenness isolines were found to be significantly coupled with the tracks of aridity velocity. In the future, the aridity velocity in natural protected areas is projected to change from wetting to drying across RCP (representative concentration pathway) 2.6, RCP6.0, and RCP8.5 scenarios. When accounting for spatial distribution of terrestrial taxa (including plants, mammals, birds, and amphibians), the global aridity velocity would be -0.15/-0.02 km/yr−1(“-” denoting drying; historical), -0.12/-0.15 km/yr−1(RCP2.6), -0.36/-0.10 km/yr−1(RCP6.0), and -0.75/-0.29 km/yr−1(RCP8.5), with amphibians particularly negatively impacted. Under all scenarios, aridity velocity shows much higher multidirectionality than temperature velocity, which is mainly poleward. These results suggest that aridification risks may significantly influence the distribution of terrestrial species besides warming impacts and further impact the effectiveness of current protected areas in future, especially under RCP8.5, which best matches historical CO2emissions [C. R. Schwalmet al.,Proc. Natl. Acad. Sci. U.S.A.117, 19656–19657 (2020)]. 
    more » « less
  5. Climate change is a threat to ski resorts, the ski industry, and mountain communities that rely on ski tourism. Ski resorts may be able to mitigate some of the social and economic impacts caused by climate change with proactive adaptation strategies. Using historical weather data, future climate projections, and interviews with ski resort managers in Utah (United States), this research investigates the effects of climate change on ski resorts across the state. We examine temperature change at all resorts within the state from 1980– 2018 and climate projections from 2021–2100 under different climate change scenarios (RCPs 2.6, 4.5, and 8.5). We also report on semistructured interviews with resort managers to provide insights into how resort leadership perceives the impacts of climate change, is implementing adaptation strategies, and is addressing barriers to adaptation. Many resorts in Utah are warming faster than global averages, and minimum temperatures are rising faster than maximum temperatures. By the end of the century, winter (December–March) minimum daily temperatures in Utah could warm an additional 6.08C under the RCP 8.5 scenario near northern Utah resorts and 6.68C near southern Utah resorts. Resort managers are concerned about shorter season lengths, shifting ski seasons, less snow cover, and poorer snow quality. Many resorts are already adapting, with the most common adaptations being snowmaking and diversifying outdoor recreation offerings (particularly during the summer and shoulder seasons). Barriers to adaptation reported by managers include financial costs, adequate water availability for snowmaking, and uncertainty about climate change projections. Climate change is already impacting Utah ski resorts, but adaptation practices can reduce the negative impacts to some degree at most resorts. 
    more » « less