skip to main content

Title: Wildland fire reburning trends across the US West suggest only short-term negative feedback and differing climatic effects
Abstract

Wildfires are a significant agent of disturbance in forests and highly sensitive to climate change. Short-interval fires and high severity (mortality-causing) fires in particular, may catalyze rapid and substantial ecosystem shifts by eliminating woody species and triggering conversions from forest to shrub or grassland ecosystems. Modeling and fine-scale observations suggest negative feedbacks between fire and fuels should limit reburn prevalence as overall fire frequency rises. However, while we have good information on reburning patterns for individual fires or small regions, the validity of scaling these conclusions to broad regions like the US West remains unknown. Both the prevalence of reburning and the strength of feedbacks on likelihood of reburning over differing timescales have not been documented at the regional scale. Here we show that while there is a strong negative feedback for very short reburning intervals throughout wildland forests of the Western US, that feedback weakens after 10–20 years. The relationship between reburning intervals and drought diverges depending on location, with coastal systems reburning quicker (e.g. shorter interval between fires) in wetter conditions and interior forests in drier. This supports the idea that vegetation productivity—primarily fine fuels that accumulate rapidly (<10 years)—is of primary importance in determining reburn intervals. more » Our results demonstrate that while over short time intervals increasing fires inhibits reburning at broad scales, that breaks down after a decade. This provides important insights about patterns at very broad scales and agrees with finer scale work, suggesting that lessons from those scales apply across the entire western US.

« less
Authors:
; ; ;
Award ID(s):
1903231 1737387
Publication Date:
NSF-PAR ID:
10303188
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
3
Page Range or eLocation-ID:
Article No. 034026
ISSN:
1748-9326
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate drivers are increasingly creating conditions conducive to higher frequency fires. In the coniferous boreal forest, the world’s largest terrestrial biome, fires are historically common but relatively infrequent. Post-fire, regenerating forests are generally resistant to burning (strong fire self-regulation), favoring millennial coniferous resilience. However, short intervals between fires are associated with rapid, threshold-like losses of resilience and changes to broadleaf or shrub communities, impacting carbon content, habitat, and other ecosystem services. Fires burning the same location 2 + times comprise approximately 4% of all Alaskan boreal fire events since 1984, and the fraction of short-interval events (< 20 years between fires) is increasing with time. While there is strong resistance to burning for the first decade after a fire, from 10 to 20 years post-fire resistance appears to decline. Reburning is biased towards coniferous forests and in areas with seasonally variable precipitation, and that proportion appears to be increasing with time, suggesting continued forest shifts as changing climatic drivers overwhelm the resistance of early postfire landscapes to reburning. As area burned in large fire years of ~ 15 years ago begin to mature, there is potential for more widespread shifts, which should be evaluated closely to understand finer grained patterns within this regional trend.
  2. Climate drivers are increasingly creating conditions conducive to higher frequency fires. In the coniferous boreal forest, the world’s largest terrestrial biome, fires are historically common but relatively infrequent. Post-fire, regenerating forests are generally resistant to burning (strong fire self-regulation), favoring millennial coniferous resilience. However, short intervals between fires are associated with rapid, threshold-like losses of resilience and changes to broadleaf or shrub communities, impacting carbon content, habitat, and other ecosystem services. Fires burning the same location 2 + times comprise approximately 4% of all Alaskan boreal fire events since 1984, and the fraction of short-interval events (< 20 years between fires) is increasing with time. While there is strong resistance to burning for the first decade after a fire, from 10 to 20 years post-fire resistance appears to decline. Reburning is biased towards coniferous forests and in areas with seasonally variable precipitation, and that proportion appears to be increasing with time, suggesting continued forest shifts as changing climatic drivers overwhelm the resistance of early postfire landscapes to reburning. As area burned in large fire years of ~ 15 years ago begin to mature, there is potential for more widespread shifts, which should be evaluated closely to understand finer grained patterns within this regional trend.
  3. Abstract

    Climate drivers are increasingly creating conditions conducive to higher frequency fires. In the coniferous boreal forest, the world’s largest terrestrial biome, fires are historically common but relatively infrequent. Post-fire, regenerating forests are generally resistant to burning (strong fire self-regulation), favoring millennial coniferous resilience. However, short intervals between fires are associated with rapid, threshold-like losses of resilience and changes to broadleaf or shrub communities, impacting carbon content, habitat, and other ecosystem services. Fires burning the same location 2 + times comprise approximately 4% of all Alaskan boreal fire events since 1984, and the fraction of short-interval events (< 20 years between fires) is increasing with time. While there is strong resistance to burning for the first decade after a fire, from 10 to 20 years post-fire resistance appears to decline. Reburning is biased towards coniferous forests and in areas with seasonally variable precipitation, and that proportion appears to be increasing with time, suggesting continued forest shifts as changing climatic drivers overwhelm the resistance of early postfire landscapes to reburning. As area burned in large fire years of ~ 15 years ago begin to mature, there is potential for more widespread shifts, which should be evaluated closely to understand finer grained patterns within this regional trend.

  4. Abstract

    Escalating burned area in western US forests punctuated by the 2020 fire season has heightened the need to explore near-term macroscale forest-fire area trajectories. As fires remove fuels for subsequent fires, feedbacks may impose constraints on the otherwise climate-driven trend of increasing forest-fire area. Here, we test how fire-fuel feedbacks moderate near-term (2021–2050) climate-driven increases in forest-fire area across the western US. Assuming constant fuels, climate–fire models project a doubling of  forest-fire area compared to 1991–2020. Fire-fuel feedbacks only modestly attenuate the projected increase in forest-fire area. Even models with strong feedbacks project increasing interannual variability in forest-fire area and more than a two-fold increase in the likelihood of years exceeding the 2020 fire season. Fuel limitations from fire-fuel feedbacks are unlikely to strongly constrain the profound climate-driven broad-scale increases in forest-fire area by the mid-21st century, highlighting the need for proactive adaptation to increased western US forest-fire impacts.

  5. Abstract Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climatemore »will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling.« less