skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wildland fire reburning trends across the US West suggest only short-term negative feedback and differing climatic effects
Abstract Wildfires are a significant agent of disturbance in forests and highly sensitive to climate change. Short-interval fires and high severity (mortality-causing) fires in particular, may catalyze rapid and substantial ecosystem shifts by eliminating woody species and triggering conversions from forest to shrub or grassland ecosystems. Modeling and fine-scale observations suggest negative feedbacks between fire and fuels should limit reburn prevalence as overall fire frequency rises. However, while we have good information on reburning patterns for individual fires or small regions, the validity of scaling these conclusions to broad regions like the US West remains unknown. Both the prevalence of reburning and the strength of feedbacks on likelihood of reburning over differing timescales have not been documented at the regional scale. Here we show that while there is a strong negative feedback for very short reburning intervals throughout wildland forests of the Western US, that feedback weakens after 10–20 years. The relationship between reburning intervals and drought diverges depending on location, with coastal systems reburning quicker (e.g. shorter interval between fires) in wetter conditions and interior forests in drier. This supports the idea that vegetation productivity—primarily fine fuels that accumulate rapidly (<10 years)—is of primary importance in determining reburn intervals. Our results demonstrate that while over short time intervals increasing fires inhibits reburning at broad scales, that breaks down after a decade. This provides important insights about patterns at very broad scales and agrees with finer scale work, suggesting that lessons from those scales apply across the entire western US.  more » « less
Award ID(s):
1903231 1737387
PAR ID:
10303188
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 034026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Escalating burned area in western US forests punctuated by the 2020 fire season has heightened the need to explore near-term macroscale forest-fire area trajectories. As fires remove fuels for subsequent fires, feedbacks may impose constraints on the otherwise climate-driven trend of increasing forest-fire area. Here, we test how fire-fuel feedbacks moderate near-term (2021–2050) climate-driven increases in forest-fire area across the western US. Assuming constant fuels, climate–fire models project a doubling of  forest-fire area compared to 1991–2020. Fire-fuel feedbacks only modestly attenuate the projected increase in forest-fire area. Even models with strong feedbacks project increasing interannual variability in forest-fire area and more than a two-fold increase in the likelihood of years exceeding the 2020 fire season. Fuel limitations from fire-fuel feedbacks are unlikely to strongly constrain the profound climate-driven broad-scale increases in forest-fire area by the mid-21st century, highlighting the need for proactive adaptation to increased western US forest-fire impacts. 
    more » « less
  2. Climate drivers are increasingly creating conditions conducive to higher frequency fires. In the coniferous boreal forest, the world’s largest terrestrial biome, fires are historically common but relatively infrequent. Post-fire, regenerating forests are generally resistant to burning (strong fire self-regulation), favoring millennial coniferous resilience. However, short intervals between fires are associated with rapid, threshold-like losses of resilience and changes to broadleaf or shrub communities, impacting carbon content, habitat, and other ecosystem services. Fires burning the same location 2 + times comprise approximately 4% of all Alaskan boreal fire events since 1984, and the fraction of short-interval events (< 20 years between fires) is increasing with time. While there is strong resistance to burning for the first decade after a fire, from 10 to 20 years post-fire resistance appears to decline. Reburning is biased towards coniferous forests and in areas with seasonally variable precipitation, and that proportion appears to be increasing with time, suggesting continued forest shifts as changing climatic drivers overwhelm the resistance of early postfire landscapes to reburning. As area burned in large fire years of ~ 15 years ago begin to mature, there is potential for more widespread shifts, which should be evaluated closely to understand finer grained patterns within this regional trend. 
    more » « less
  3. Climate drivers are increasingly creating conditions conducive to higher frequency fires. In the coniferous boreal forest, the world’s largest terrestrial biome, fires are historically common but relatively infrequent. Post-fire, regenerating forests are generally resistant to burning (strong fire self-regulation), favoring millennial coniferous resilience. However, short intervals between fires are associated with rapid, threshold-like losses of resilience and changes to broadleaf or shrub communities, impacting carbon content, habitat, and other ecosystem services. Fires burning the same location 2 + times comprise approximately 4% of all Alaskan boreal fire events since 1984, and the fraction of short-interval events (< 20 years between fires) is increasing with time. While there is strong resistance to burning for the first decade after a fire, from 10 to 20 years post-fire resistance appears to decline. Reburning is biased towards coniferous forests and in areas with seasonally variable precipitation, and that proportion appears to be increasing with time, suggesting continued forest shifts as changing climatic drivers overwhelm the resistance of early postfire landscapes to reburning. As area burned in large fire years of ~ 15 years ago begin to mature, there is potential for more widespread shifts, which should be evaluated closely to understand finer grained patterns within this regional trend. 
    more » « less
  4. Abstract Climate drivers are increasingly creating conditions conducive to higher frequency fires. In the coniferous boreal forest, the world’s largest terrestrial biome, fires are historically common but relatively infrequent. Post-fire, regenerating forests are generally resistant to burning (strong fire self-regulation), favoring millennial coniferous resilience. However, short intervals between fires are associated with rapid, threshold-like losses of resilience and changes to broadleaf or shrub communities, impacting carbon content, habitat, and other ecosystem services. Fires burning the same location 2 + times comprise approximately 4% of all Alaskan boreal fire events since 1984, and the fraction of short-interval events (< 20 years between fires) is increasing with time. While there is strong resistance to burning for the first decade after a fire, from 10 to 20 years post-fire resistance appears to decline. Reburning is biased towards coniferous forests and in areas with seasonally variable precipitation, and that proportion appears to be increasing with time, suggesting continued forest shifts as changing climatic drivers overwhelm the resistance of early postfire landscapes to reburning. As area burned in large fire years of ~ 15 years ago begin to mature, there is potential for more widespread shifts, which should be evaluated closely to understand finer grained patterns within this regional trend. 
    more » « less
  5. Abstract BackgroundThe increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70–130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (> 70 years), intermediate (30–70 years), and short (< 30 years) FRIs, and triple (three fires in < 70 years) burns. As boreal forests store a significant portion of the global terrestrial carbon (C) pool, understanding the impacts of shortened FRIs on these ecosystems is critical for predicting the global C balance and feedbacks to climate. ResultsUsing a spatially extensive dataset of 555 plots from 31 separate fires in Interior Alaska, our study demonstrates that shortened FRIs decrease the C storage capacity of boreal forests through loss of legacy C and regeneration failure. Total wildfire C emissions were similar among FRI classes, ranging from 2.5 to 3.5 kg C m−2. However, shortened FRIs lost proportionally more of their pre-fire C pools, resulting in substantially lower post-fire C pools than long FRIs. Shortened FRIs also resulted in the combustion of legacy C, defined as C that escaped combustion in one or more previous fires. We found that post-fire successional trajectories were impacted by FRI, with ~ 65% of short FRIs and triple burns experiencing regeneration failure. ConclusionsOur study highlights the structural and functional vulnerability of boreal forests to increasing fire frequency. Shortened FRIs and the combustion of legacy C can shift boreal ecosystems from a net C sink or neutral to a net C source to the atmosphere and increase the risk of transitions to non-forested states. These changes could have profound implications for the boreal C-climate feedback and underscore the need for adaptive management strategies that prioritize the structural and functional resilience of boreal forest ecosystems to expected increases in fire frequency. 
    more » « less