skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atomic Layer Deposition of Nanolayered Carbon Films
In this paper, carbon thin films were grown using the plasma-enhanced atomic layer deposition (PE-ALD). Methane (CH4) was used as the carbon precursor to grow the carbon thin film. The grown film was analyzed by the high-resolution transmission electron micrograph (TEM), X-ray photoelectron spectroscopy (XPS) analysis, and Raman spectrum analysis. The analyses show that the PE-ALD-grown carbon film has an amorphous structure. It was found that the existence of defective sites (nanoscale holes or cracks) on the substrate of copper foil could facilitate the formation of nanolayered carbon films. The mechanism for the formation of nanolayered carbon film in the nanoscale holes was discussed. This finding could be used for the controlled growth of nanolayered carbon films or other two-dimensional nanomaterials while combining with modern nanopatterning techniques.  more » « less
Award ID(s):
1740687
PAR ID:
10303223
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
C
Volume:
7
Issue:
4
ISSN:
2311-5629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2 thin films were compared. 
    more » « less
  2. Nanostructured molybdenum disulfide (MoS2) thin films were grown on a nanohole-patterned silicon substrate using plasma-enhanced atomic layer deposition. A nanoscale hole-patterned silicon substrate was fabricated for the growth of MoS2 film using the self-assembly-based nanofabrication method. The nanoscale holes can significantly increase the surface area of the substrate while the formation and growth of nanostructures normally start at the surface of the substrate. Hydrogen sulfide (H2S) gas was used as the S source in the growth of molybdenum disulfide (MoS2) while molybdenum (V) chloride (MoCl5) powder was used as the Mo source. The MoS2 film had a stoichiometric ratio of 1 (Mo) to 2 (S), and had peaks of E12g and A1g, which represent the in-plane and out-plane vibration modes of the Mo–S bond, respectively. It was found that the MoS2 film grown in the nanoscale hole, especially at the wall of the hole, has more hexagonal-like structures due to the effects of nanoscale space confinement and the nanoscale interface although the film shows an amorphous structure. Post-growth high-temperature annealing ranging from 800 to 900 °C produced local crystalline structures in the film, which are compatible with those reported by other researchers. 
    more » « less
  3. Abstract This study investigates the presence of titanium oxynitride bonds in titanium dioxide (TiO2) thin films grown by atomic layer deposition (ALD) using tetrakis dimethyl amino titanium (TDMAT) and water at temperatures between 150 and 350 °C and its effect on the films’ optical and electrical properties. Compositional analysis using X‐ray photoelectron spectroscopy (XPS) reveals increased incorporation of oxynitride bonds as the process temperature increases. Furthermore, depth profile data demonstrates an increase in the abundance of this type of bonding from the surface to the bulk of the films. Ultraviolet‐visible spectroscopy (UV‐vis) measurements correlate increased visible light absorption for the films with elevated oxynitride incorporation. The optical constants (n, k) of the films show a pronounced dependence on the process temperature that is mirrored in the film conductivity. The detection of oxynitride bonding suggests a secondary reaction pathway in this well‐established ALD process chemistry, that may impact film properties. These findings indicate that the choice of process chemistry and conditions can be used to optimize film properties for optoelectronic applications. 
    more » « less
  4. We report the design, fabrication, and testing of an atomic layer deposition (ALD) system that is capable of reflection high energy electron diffraction (RHEED) in a single chamber. The details and specifications of the system are described and include capabilities of RHEED at varied accelerating voltages, sample rotation (azimuthal) control, sample height control, sample heating up to set temperatures of 1050 °C, and either single- or dual-differential pumping designs. Thermal and flow simulations were used to justify selected system dimensions as well as carrier gas/precursor mass flow rates. Temperature calibration was conducted to determine actual sample temperatures that are necessary for meaningful analysis of thermally induced transitions in ALD thin films. Several demonstrations of RHEED in the system are described. Calibration of the camera length was conducted using a gold thin film by analyzing RHEED images. Finally, RHEED conducted at a series of increasing temperatures was used to monitor the crystallization of an ALD HfO2 thin film. The crystallization temperature and the ring pattern were consistent with the monoclinic structure as determined by separate x-ray diffraction-based measurements. 
    more » « less
  5. Magnetic tunnel junctions (MTJs), formed through sandwiching an ultrathin insulating film (so-called tunnel barrier or TB), with ferromagnetic metal electrodes, are fundamental building blocks in magnetoresistive random access memory (MRAM), spintronics, etc. The current MTJ technology employs physical vapor deposition (PVD) to fabricate either amorphous AlOx or epitaxial MgO TBs of thickness around 1 nm or larger to avoid leakage caused by defects in TBs. Motivated by the fundamental limitation in PVD in, and the need for atomically thin and defect-free TBs in MTJs, this work explores atomic layer deposition (ALD) of 1-6 Å thick Al2O3 TBs both directly on Fe films and with an ultrathin Al wetting layer. In situ characterization of the ALD Al2O3 TB was carried out using scanning tunneling spectroscopy (STS). Despite a moderate decrease in TB height Eb with reducing Al wetting layer thicknesses, a remarkable Eb of ∼1.25 eV was obtained on 1 Å thick ALD Al2O3 TB grown directly on an Fe electrode, which is more than twice of that of thermal AlOx TB (∼0.6 eV). Achieving such an atomically thin low-defect TB represents a major step towards improving spin current tunneling in MTJs. 
    more » « less