Electrochemical atomic layer etching (e-ALE) is a unique approach for etching metals one atomic layer at a time. If practiced under optimal conditions, e-ALE ensures minimal evolution of surface roughness due to the atomic layer-by-layer etching characteristics. During e-ALE of copper (Cu), the crucial first step is the formation of a cuprous sulfide (Cu2S) monolayer via the surface-limited sulfidization reaction. In this paper, we investigate the surface coverage of this sulfide layer as a function of the sulfidization potential, and show that the equilibrium coverage attained can be modeled using the Frumkin adsorption isotherm. At a potential of –0.74 V vs SHE, sulfidization provides near-complete monolayer coverage of Cu by Cu2S, which then facilitates e-ALE in a layer-by-layer etching mode thereby maintaining a smooth post-etch surface. Operation at potentials negative with respect to –0.74 V provides sub-monolayer coverage, which manifests in roughness amplification during etching. This work provides a thermodynamics-guided foundation for the selection of operating conditions during Cu e-ALE.
more »
« less
Electrochemical Atomic Layer Etching of Ruthenium
A novel process for the electrochemical atomic layer etching (e-ALE) of ruthenium (Ru) is described. In this process, the surface Ru is electrochemically oxidized to form a monolayer of ruthenium (III) hydroxide—Ru(OH)3. The Ru(OH)3monolayer is then selectively etched in an electrolyte containing chloride (Cl–) species. This etching process is selective towards Ru(OH)3and does not attack the underlying Ru metal. Adsorbed Cl–on the Ru electrode is then cathodically desorbed before the sequence of Ru oxidation and Ru(OH)3etching is repeated. This e-ALE sequence is shown to etch Ru at approximately 0.5 monolayer per cycle while practically avoiding any surface roughness amplification. The proposed Ru e-ALE process uses a single electrolyte which eliminates the need for electrode transfer or electrolyte switching between process steps. In this report, we employ electrochemical, microscopic and spectroscopic techniques to gain insights into the various characteristics of the Ru e-ALE process.
more »
« less
- Award ID(s):
- 1661565
- PAR ID:
- 10303244
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 167
- Issue:
- 6
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- Article No. 062510
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Development of high‐performance, low‐cost catalysts for electrochemical water splitting is key to sustainable hydrogen production. Herein, ultrafast synthesis of carbon‐supported ruthenium–copper (RuCu/C) nanocomposites is reported by magnetic induction heating, where the rapid Joule's heating of RuCl3and CuCl2at 200 A for 10 s produces Ru–Cl residues‐decorated Ru nanocrystals dispersed on a CuClxscaffold, featuring effective Ru to Cu charge transfer. Among the series, the RuCu/C‐3 sample exhibits the best activity in 1 mKOH toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with an overpotential of only −23 and +270 mV to reach 10 mA cm−2, respectively. When RuCu/C‐3 is used as bifunctional catalysts for electrochemical water splitting, a low cell voltage of 1.53 V is needed to produce 10 mA cm−2, markedly better than that with a mixture of commercial Pt/C+RuO2(1.59 V). In situ X‐ray absorption spectroscopy measurements show that the bifunctional activity is due to reduction of the Ru–Cl residues at low electrode potentials that enriches metallic Ru and oxidation at high electrode potentials that facilitates the formation of amorphous RuOx. These findings highlight the unique potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting.more » « less
-
Abstract The fabrication of Ru nanostructures by focused electron beam induced deposition (FEBID) requires suitable precursor molecules and processes to obtain the pure metal. So far this is problematic because established organometallic Ru precursors contain large organic ligands, such as cyclopentadienyl anions, that tend to become embedded in the deposit during the FEBID process. Recently, (η3-C3H5)Ru(CO)3X (X = Cl, Br) has been proposed as an alternative precursor because CO can easily desorb under electron exposure. However, allyl and Cl ligands remain behind after electron irradiation and the removal of the halide requires extensive electron exposures. Auger electron spectroscopy is applied to demonstrate a postdeposition purification process in which NH3is used as a reactant that enhances the removal of Cl from deposits formed by electron irradiation of thin condensed layers of (η3-C3H5)Ru(CO)3Cl. The loss of CO from the precursor during electron-induced decomposition enables a reaction between NH3and the Cl ligands that produces HCl. The combined use of electron-stimulated desorption experiments and thermal desorption spectrometry further reveals that thermal reactions contribute to the loss of CO in the FEBID process but remove only minor amounts of the allyl and Cl ligands.more » « less
-
Abstract Li2MnO3has been contemplated as a high‐capacity cathode candidate for Li‐ion batteries; however, it evolves oxygen during battery charging under ambient conditions, which hinders a reversible reaction. However, it is unclear if this irreversible process still holds under subambient conditions. Here, the low‐temperature electrochemical properties of Li2MnO3in an aqueous LiCl electrolyte are evaluated and a reversible discharge capacity of 302 mAh g−1at a potential of 1.0 V versus Ag/AgCl at −78 °C with good rate capability and stable cycling performance, in sharp contrast to the findings in a typical Li2MnO3cell cycled at room temperature, is observed. However, the results reveal that the capacity does not originate from the reversible oxygen oxidation in Li2MnO3but the reversible Cl2(l)/Cl−(aq.) redox from the electrolyte. The results demonstrate the good catalytic properties of Li2MnO3to promote the Cl2/Cl−redox at low temperatures.more » « less
-
Abstract Ruthenium has been hailed as a competitive alternative for platinum toward hydrogen evolution reaction (HER), a critical process in electrochemical water splitting. In this study, we successfully prepare metallic Ru nanoparticles supported on carbon paper by utilizing a novel magnetic induction heating (MIH) method. The samples are obtained within seconds, featuring a Cl‐enriched surface that is unattainable via conventional thermal annealing. The best sample within the series shows a remarkable HER activity in both acidic and alkaline media with an overpotential of only ‐23 and ‐12 mV to reach the current density of 10 mA/cm2, highly comparable to that of the Pt/C benchmark. Theoretical studies based on density functional theory show that the excellent electrocatalytic activity is accounted by the surface metal‐Cl species that facilitate charge transfer and downshift the d‐band center. Results from this study highlight the unique advantages of MIH in rapid sample preparation, where residual anion ligands play a critical role in manipulating the electronic properties of the metal surfaces and the eventual electrocatalytic activity.more » « less
An official website of the United States government
