skip to main content


Title: Multiscale trends and precipitation extremes in the Central American Midsummer Drought
Abstract

Anecdotal evidence suggests that the timing and intensity of the Central American Midsummer Drought (MSD) may be changing, while observations from limited meteorological station data and paleoclimate reconstructions show neither significant nor consistent trends in seasonal rainfall. Climate model simulations project robust future drying across the region, but internal variability is expected to dominate until the end of the century. Here we use a high-resolution gridded precipitation dataset to investigate these apparent discrepancies and to quantify the spatiotemporal complexities of the MSD. We detect spatially variable trends in MSD timing, the amount of rainy season precipitation, the number of consecutive and total dry days, and extreme wet events at the local scale. At the regional scale, we find a positive trend in the duration, but not the magnitude of the MSD, which is dominated by spatially heterogeneous trends and interannual variability linked to large-scale modes of ocean-atmosphere circulation. Although the current climate still reflects predominantly internal variability, some Central American communities are already experiencing significant changes in local characteristics of the MSD. A detailed spatiotemporal understanding of MSD trends and variability can contribute to evidence-based adaptation planning and help reduce the vulnerability of Central American communities to both natural rainfall variability and anthropogenic change.

 
more » « less
NSF-PAR ID:
10303248
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
14
Issue:
12
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 124016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio‐environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long‐term flash drought predictions and adaptations.

     
    more » « less
  2. Societal Impact Statement

    Networks of digitized herbarium records are rich resources for understanding plant responses to climate change. While the climate is warming globally, some localities are experiencing climate cooling, the effects of which are poorly understood. Our herbarium‐based study of a geographically restricted species shows that the timing of reproduction can shift earlier as the climate becomes cooler and wetter. Local variation in climate change may be a key factor driving the high variability of changes observed in plant reproduction and climate cooling should be considered along with other global change drivers. This will help enable accurate predictions for the successful management of climate change effects.

    Summary

    Plant phenological responses to global warming are well studied. However, while many locations are experiencing increased temperatures, some locations are experiencing climate cooling. Little work has been conducted to understand plant phenological responses to cooling trends, much less the combined effects of cooling and other factors, such as changing precipitation. Furthermore, studies based on herbarium specimens have been instrumental in demonstrating plant responses to global warming; but to our knowledge, herbarium records have not been used to investigate responses to cooling.

    We collected data from 98 years of herbarium records to evaluate whether the reproductive phenology (flowering/fruiting) of an annual mustard, cedar gladecress (Leavenworthia stylosa), has changed as the climate has become cooler and wetter in central Tennessee, USA. Additionally, we conducted two field experiments to assess reproductive consequences of different flowering times.

    Over the last century, gladecress reproductive phenology has shifted 2.1 days earlier per decade, concurrent with wetter conditions during germination and cooler conditions during reproduction. Field experiments showed that plants with extremely early and moderately early flowering had equivalent reproduction, but these plants had greater reproduction than intermediate‐ and late‐flowering plants.

    Counter to expectations from global warming studies, our work demonstrates that climate cooling and greater rainfall can result in earlier plant reproductive phenology, potentially due to asymmetric selection for early flowering. Future studies may need to consider climate cooling along with other global change factors to fully explain changes in plant phenology. Our understanding of plant responses to climate cooling can be enhanced through additional herbarium‐based research.

     
    more » « less
  3. Abstract

    Vegetation phenology—the seasonal timing and duration of vegetative phases—is controlled by spatiotemporally variable contributions of climatic and environmental factors plus additional potential influence from human management. We used land surface phenology derived from the Advanced Very High Resolution Radiometer and climate data to examine variability in vegetation productivity and phenological dates from 1989 to 2014 in the U.S. Northwestern Plains, a region with notable spatial heterogeneity in climate, vegetation, and land use. We first analyzed interannual trends in six phenological measures as a baseline. We then demonstrated how including annual‐resolution predictors can provide more nuanced insights into measures of phenology between plant communities and across the ecoregion. Across the study area, higher annual precipitation increased both peak and season‐long productivity. In contrast, higher mean annual temperatures tended to increase peak productivity but for the majority of the study area decreased season‐long productivity. Annual precipitation and temperature had strong explanatory power for productivity‐related phenology measures but predicted date‐based measures poorly. We found that relationships between climate and phenology varied across the region and among plant communities and that factors such as recovery from disturbance and anthropogenic management also contributed in certain regions. In sum, phenological measures did not respond ubiquitously nor covary in their responses. Nonclimatic dynamics can decouple phenology from climate; therefore, analyses including only interannual trends should not assume climate alone drives patterns. For example, models of areas exhibiting greening or browning should account for climate, anthropogenic influence, and natural disturbances. Investigating multiple aspects of phenology to describe growing‐season dynamics provides a richer understanding of spatiotemporal patterns that can be used for predicting ecosystem responses to future climates and land‐use change. Such understanding allows for clearer interpretation of results for conservation, wildlife, and land management.

     
    more » « less
  4. Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio-environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long-term flash drought predictions and adaptations. 
    more » « less
  5. Abstract Aim

    Understanding the factors that shape biodiversity over space and time is a central question in ecology. Spatiotemporal environmental variation in resource availability can favor different species, generating beta diversity patterns that increase overall diversity. A key question is the degree to which biotic processes—in particular herbivory—enhance or dampen the effect of environmental variation on resource availability at different scales.

    Location

    We tested this question in a semi‐arid California grassland, which is characterized by high rainfall variability. The system supports giant kangaroo rats (Dipodomys ingens), which form mounds that structure spatial variability in soil nutrient availability.

    Methods

    From 2008 to 2017 we implemented a cattle herbivory exclusion experiment to test whether herbivory moderates the effect of spatial and inter‐annual resource variability on plant biomass and diversity both on and off mounds.

    Results

    Grazing reduced local diversity regardless of mound status or amount of precipitation. However, we found that plant productivity was higher on than off mounds, increased following high rainfall years, and that grazing increased these on‐ versus off‐mound differences in wet years—especially after a major drought. Correspondingly, grazing led to on‐mound communities that were more different from each other and from off‐mound communities.

    Conclusions

    Taken together, our results suggest that herbivory generally enhances habitat heterogeneity across this arid landscape, but is resource context‐dependent with greater effects seen in wetter years.

     
    more » « less