skip to main content

Title: Multiscale trends and precipitation extremes in the Central American Midsummer Drought

Anecdotal evidence suggests that the timing and intensity of the Central American Midsummer Drought (MSD) may be changing, while observations from limited meteorological station data and paleoclimate reconstructions show neither significant nor consistent trends in seasonal rainfall. Climate model simulations project robust future drying across the region, but internal variability is expected to dominate until the end of the century. Here we use a high-resolution gridded precipitation dataset to investigate these apparent discrepancies and to quantify the spatiotemporal complexities of the MSD. We detect spatially variable trends in MSD timing, the amount of rainy season precipitation, the number of consecutive and total dry days, and extreme wet events at the local scale. At the regional scale, we find a positive trend in the duration, but not the magnitude of the MSD, which is dominated by spatially heterogeneous trends and interannual variability linked to large-scale modes of ocean-atmosphere circulation. Although the current climate still reflects predominantly internal variability, some Central American communities are already experiencing significant changes in local characteristics of the MSD. A detailed spatiotemporal understanding of MSD trends and variability can contribute to evidence-based adaptation planning and help reduce the vulnerability of Central American communities to both natural more » rainfall variability and anthropogenic change.

« less
; ; ;
Publication Date:
Journal Name:
Environmental Research Letters
Page Range or eLocation-ID:
Article No. 124016
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical cyclones (TCs) are an important source of precipitation for much of the eastern United States. However, our understanding of the spatiotemporal variability of tropical cyclone precipitation (TCP) and the connections to large-scale atmospheric circulation is limited by irregularly distributed rain gauges and short records of satellite measurements. To address this, we developed a new gridded (0.25° × 0.25°) publicly available dataset of TCP (1948–2015; Tropical Cyclone Precipitation Dataset, or TCPDat) using TC tracks to identify TCP within an existing gridded precipitation dataset. TCPDat was used to characterize total June–November TCP and percentage contribution to total June–November precipitation. TCP totals and contributions had maxima on the Louisiana, North Carolina, and Texas coasts, substantially decreasing farther inland at rates of approximately 6.2–6.7 mm km−1. Few statistically significant trends were discovered in either TCP totals or percentage contribution. TCP is positively related to an index of the position and strength of the western flank of the North Atlantic subtropical high (NASH), with the strongest correlations concentrated in the southeastern United States. Weaker inverse correlations between TCP and El Niño–Southern Oscillation are seen throughout the study site. Ultimately, spatial variations of TCP are more closely linked to variations in the NASH flank positionmore »or strength than to the ENSO index. The TCP dataset developed in this study is an important step in understanding hurricane–climate interactions and the impacts of TCs on communities, water resources, and ecosystems in the eastern United States.

    « less
  2. The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM.

    El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent.

    The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climatemore »Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.

    « less
  3. Abstract

    Identifying the origins of wintertime climate variations in the Northern Hemisphere requires careful attribution of the role of El Niño–Southern Oscillation (ENSO). For example, Aleutian low variability arises from internal atmospheric dynamics and is remotely forced mainly via ENSO. How ENSO modifies the local sea surface temperature (SST) and North American precipitation responses to Aleutian low variability remains unclear, as teasing out the ENSO signal is difficult. This study utilizes carefully designed coupled model experiments to address this issue. In the absence of ENSO, a deeper Aleutian low drives a positive Pacific decadal oscillation (PDO)-like SST response. However, unlike the observed PDO pattern, a coherent zonal band of turbulent heat flux–driven warm SST anomalies develops throughout the subtropical North Pacific. Furthermore, non-ENSO Aleutian low variability is associated with a large-scale atmospheric circulation pattern confined over the North Pacific and North America and dry precipitation anomalies across the southeastern United States. When ENSO is included in the forcing of Aleutian low variability in the experiments, the ENSO teleconnection modulates the turbulent heat fluxes and damps the subtropical SST anomalies induced by non-ENSO Aleutian low variability. Inclusion of ENSO forcing results in wet precipitation anomalies across the southeastern United States, unlikemore »when the Aleutian low is driven by non-ENSO sources. Hence, we find that the ENSO teleconnection acts to destructively interfere with the subtropical North Pacific SST and southeastern United States precipitation signals associated with non-ENSO Aleutian low variability.

    « less
  4. Rainfall in the Amazon is influenced by atmospheric circulation dynamics on multiple spatiotemporal scales. Anthropogenic influences such as deforestation, land-use changes, and global climate change are also critical factors in determining rainfall in South America. Modeling studies have projected a drier climate with the ongoing deforestation in the Amazon, but observational evaluation of the variability of rainfall and deforestation patterns has been limited. This study analyzes spatiotemporal trends in rainfall between 1981 and 2020 and relationships with deforestation age in the Brazilian Legal Amazon (BLA). An improved rainfall dataset is derived by calibrating the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data with observations from a rain gauge network in the BLA. Trend analysis is employed to identify significant changes in precipitation over the BLA. Satellite-based land cover data Mapbiomas and ET datasets are used to evaluate similar trends. While large spatial variability is observed, the results show coherent relationships between negative dry-season rainfall trends and old-age deforested areas. Deforestation aged up to a decade enhanced rainfall and older deforested regions have reduced rainfall during the dry season. These results suggest substantial changes in the hydroclimate of the BLA and increased vulnerability to future land cover change.
  5. The Azores High (AH), a subtropical ridge in the atmosphere over the North Atlantic comprising one node of the North Atlantic Oscillation (NAO) system, has a dominant influence on the weather and climate of the Iberian Peninsula and northwest Africa. The behavior of the entire NAO system over the last millennium has been the subject of much debate in both proxy- and model-based studies. Many studies have focused on the behavior of the entire NAO system, but we focus solely on the behavior of the AH due to its proximity to this region. Other proxies from this region, mainly from Spain and Morocco, have provided details about atmospheric dynamics yet spatiotemporal gaps remain. In this study, we present a continuous, sub-decadally-resolved composite stalagmite carbon isotopic record from three partially overlapping stalagmites from Buraca Gloriosa (BG) cave, western Portugal, situated within the center of the AH, that preserves evidence of regional hydroclimate variability from approximately 800 CE to the present. This composite record, developed from U-Th dating and laminae counting paired with carbon isotopes, primarily reflects effective moisture in western Portugal. Given the close pairing of AH behavior (intensity, size, and location) and moisture transport in this region, the BG compositemore »record allows for a thorough analysis of AH behavior over time. Multidecadal to centennial scale variability in the BG record and state-of-the-art last millennium climate model simulations show considerable coherence with precipitation-sensitive records from Spain and Morocco that, like BG, are strongly influenced by the intensity, size, and location of the AH. Synthesis of model output and proxy data suggests that western Portugal was persistently dry during much of the Medieval Climate Anomaly (MCA; ~850-1250 CE) and Modern era (1850 CE-present) and experienced wetter conditions during Little Ice Age (LIA; ~1400-1850 CE). Even considering age uncertainties from the Iberian Peninsula and northwest Africa proxy records, the apparent timing in the transition from a relatively dry MCA to a wetter LIA is spatially variable across this region, likely due to the non-stationary behavior of the AH system.« less