One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, the
The efficiency of thin-film solar cells with a Cu(
- PAR ID:
- 10303266
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Energy
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2515-7655
- Page Range / eLocation ID:
- Article No. 025001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z -axis) with frequencyω 0due to absorption of low-power microwaves of frequencyω 0under the resonance conditions and in the absence of any applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that component of spin current vector is time-independent while and oscillate harmonically in time with a single frequencyω 0whereas pumped charge current is zero in the same adiabatic limit. Here we employ more general approaches than the ‘standard model’, namely the time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spin and chargeI (t ) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiples of the driving frequencyω 0. The cutoff order of such high harmonics increases with SOC strength, reaching in the one-dimensional FM or AFM models chosen for demonstration. A higher cutoff can be achieved in realistic two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures. -
Abstract We report the temperature dependence of the Yb valence in the geometrically frustrated compound
from 12 to 300 K using resonant x-ray emission spectroscopy at the Yb transition. We find that the Yb valence,v , is hybridized between thev = 2 andv = 3 valence states, increasing from at 12 K to at 300 K, confirming that is a Kondo system in the intermediate valence regime. This result indicates that the Kondo interaction in is substantial, and is likely to be the reason why does not order magnetically at low temperature, rather than this being an effect of geometric frustration. Furthermore, the zero-point valence of the system is extracted from our data and compared with other Kondo lattice systems. The zero-point valence seems to be weakly dependent on the Kondo temperature scale, but not on the valence change temperature scaleT v . -
Abstract We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (
β p= 0.25) collisionless ion–electron shocks with mass ratiom i/m e= 200, fast Mach number –4, and upstream magnetic field angleθ Bn= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, -parallel electric potential jump, ΔB ϕ ∥, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ ∥, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ ∥in our low-β pshocks. We further focus on twoθ Bn= 65° shocks: a ( ) case with a long, 30d iprecursor of whistler waves along , and a ( ) case with a shorter, 5d iprecursor of whistlers oblique to both and ;B d iis the ion skin depth. Within the precursors,ϕ ∥has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the ,θ Bn= 65° case,ϕ ∥shows a weak dependence on the electron plasma-to-cyclotron frequency ratioω pe/Ωce, andϕ ∥decreases by a factor of 2 asm i/m eis raised to the true proton–electron value of 1836. -
Abstract We present13CO(
J = 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF 60/F 100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r 25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r 25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r 25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations. -
Abstract Objective .In vivo imaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach . In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness ( ), substrate shear stiffness ( ), shear anisotropy ( ), and tensile anisotropy ( ) of the gastrocnemius muscle in response to both passive and active tension.Main results . In passive tension, we found a significant increase in and with increasing muscle length. While in active tension, we observed increasing and decreasing and during active dorsiflexion and plantarflexion—indicating less anisotropy—with greater effects when the muscles act as agonist.Significance . The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction.