skip to main content


Title: Quantum codes from neural networks
Abstract

We examine the usefulness of applying neural networks as a variational state ansatz for many-body quantum systems in the context of quantum information-processing tasks. In the neural network state ansatz, the complex amplitude function of a quantum state is computed by a neural network. The resulting multipartite entanglement structure captured by this ansatz has proven rich enough to describe the ground states and unitary dynamics of various physical systems of interest. In the present paper, we initiate the study of neural network states in quantum information-processing tasks. We demonstrate that neural network states are capable of efficiently representing quantum codes for quantum information transmission and quantum error correction, supplying further evidence for the usefulness of neural network states to describe multipartite entanglement. In particular, we show the following main results: (a) neural network states yield quantum codes with a high coherent information for two important quantum channels, the generalized amplitude damping channel and the dephrasure channel. These codes outperform all other known codes for these channels, and cannot be found using a direct parametrization of the quantum state. (b) For the depolarizing channel, the neural network state ansatz reliably finds the best known codes given by repetition codes. (c) Neural network states can be used to represent absolutely maximally entangled states, a special type of quantum error-correcting codes. In all three cases, the neural network state ansatz provides an efficient and versatile means as a variational parametrization of these highly entangled states.

 
more » « less
PAR ID:
10303270
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
22
Issue:
2
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 023005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider information spreading measures in randomly initialized variational quantum circuits and introduce entanglement diagnostics for efficient variational quantum/classical computations. We establish a robust connection between entanglement measures and optimization accuracy by solving two eigensolver problems for Ising Hamiltonians with nearest-neighbor and long-range spin interactions. As the circuit depth affects the average entanglement of random circuit states, the entanglement diagnostics can identify a high-performing depth range for optimization tasks encoded in local Hamiltonians. We argue, based on an eigensolver problem for the Sachdev–Ye–Kitaev model, that entanglement alone is insufficient as a diagnostic to the approximation of volume-law entangled target states and that a large number of circuit parameters is needed for such an optimization task. 
    more » « less
  2. Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science by offering novel applications in quantum computation, enhanced precision in networks of sensors and clocks, and efficient quantum communication over large distances. Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks. We highlight latest developments and near-term prospects on how arrays of individually controlled neutral atoms are suited for both efficient remote entanglement generation and large-scale quantum information processing, thereby providing the necessary features for sharing high-fidelity and error-corrected multi-qubit entangled states between the nodes. We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes. 
    more » « less
  3. Abstract

    Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science by offering novel applications in quantum computation, enhanced precision in networks of sensors and clocks, and efficient quantum communication over large distances. Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks. We highlight latest developments and near-term prospects on how arrays of individually controlled neutral atoms are suited for both efficient remote entanglement generation and large-scale quantum information processing, thereby providing the necessary features for sharing high-fidelity and error-corrected multi-qubit entangled states between the nodes. We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes.

     
    more » « less
  4. Abstract

    A distributed sensing protocol uses a network of local sensing nodes to estimate a global feature of the network, such as a weighted average of locally detectable parameters. In the noiseless case, continuous-variable (CV) multipartite entanglement shared by the nodes can improve the precision of parameter estimation relative to the precision attainable by a network without shared entanglement; for an entangled protocol, the root mean square estimation error scales like 1/Mwith the numberMof sensing nodes, the so-called Heisenberg scaling, while for protocols without entanglement, the error scales like1/M. However, in the presence of loss and other noise sources, although multipartite entanglement still has some advantages for sensing displacements and phases, the scaling of the precision withMis less favorable. In this paper, we show that using CV error correction codes can enhance the robustness of sensing protocols against imperfections and reinstate Heisenberg scaling up to moderate values ofM. Furthermore, while previous distributed sensing protocols could measure only a single quadrature, we construct a protocol in which both quadratures can be sensed simultaneously. Our work demonstrates the value of CV error correction codes in realistic sensing scenarios.

     
    more » « less
  5. Recent constructions of quantum low-density parity-check (QLDPC) codes provide optimal scaling of the number of logical qubits and the minimum distance in terms of the code length, thereby opening the door to fault-tolerant quantum systems with minimal resource overhead. However, the hardware path from nearest-neighbor-connection-based topological codes to long-range-interaction-demanding QLDPC codes is likely a challenging one. Given the practical difficulty in building a monolithic architecture for quantum systems, such as computers, based on optimal QLDPC codes, it is worth considering a distributed implementation of such codes over a network of interconnected medium-sized quantum processors. In such a setting, all syndrome measurements and logical operations must be performed through the use of high-fidelity shared entangled states between the processing nodes. Since probabilistic many-to-1 distillation schemes for purifying entanglement are inefficient, we investigate quantum error correction based entanglement purification in this work. Specifically, we employ QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing (DQC), e.g. for fault-tolerant Steane syndrome extraction. This protocol is applicable beyond the application of DQC since entanglement distribution and purification is a quintessential task of any quantum network. We use the min-sum algorithm (MSA) based iterative decoder with a sequential schedule for distilling3-qubit GHZ states using a rate0.118family of lifted product QLDPC codes and obtain an input fidelity threshold of0.7974under i.i.d. single-qubit depolarizing noise. This represents the best threshold for a yield of0.118for any GHZ purification protocol. Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of3-qubit GHZ states to construct a scalable GHZ purification protocol.

     
    more » « less