skip to main content


Title: Impact of Polyvinylidene Fluoride on Nanofiber Cathode Structure and Durability in Proton Exchange Membrane Fuel Cells

The impact of polyvinylidene fluoride (PVDF) as a binder component on the durability of Pt/C cathodes in a proton exchange membrane fuel cell membrane-electrode-assembly (MEA) during a carbon corrosion accelerated stress test (AST) was examined using electrochemical fuel cell data and visual inspection/analysis of the cathode morphology via electron-microscopy. Electrospun nanofiber cathode mat MEAs with a Nafion®/PVDF or Nafion/poly(acrylic acid) (PAA) binder or a slurry cathode MEA with neat Nafion or a Nafion/PVDF binder were investigated. The presence of PVDF had profound effects on the structure and chemical/electrochemical properties of a fuel cell cathode; its hydrophobic property slowed the rate of carbon loss and its robust mechanical properties added strength to the binder. Thus, the extent of carbon loss during an AST was inversely proportional to the PVDF content of the binder and there was no observable cathode thinning nor any change in cathode porosity after the AST, when the cathode binder contained at least 50 wt% PVDF. In terms of long-term durability, these beneficial structural effects outweighed the lower Nafion/PVDF binder conductivity and the associated lower initial power output of a Nafion/PVDF cathode MEA. For hydrophilic slurry and nanofiber cathodes with neat Nafion or Nafion/PAA fibers, low power after the carbon corrosion AST was due to greater carbon losses, cathode thinning and the collapse of cathode pores, which dominated MEA performance even though the initial cathode ECSA and mass activity were high for these two MEAs.

 
more » « less
NSF-PAR ID:
10303271
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
167
Issue:
5
ISSN:
0013-4651
Page Range / eLocation ID:
Article No. 054517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this study, pentablock terpolymers with methylpyrrolidinium cations were characterized and investigated as anion exchange membranes and ionomers for solid‐state alkaline fuel cells. The pentablock terpolymer (with methylpyrrolidinium cations) membranes exhibited higher fuel cell power density and durability than commercial FuMA‐Tech (with quaternary ammonium cations) membranes at 30 °C, 100% relative humidity (RH). Optimization of the catalyst ink composition (i.e., solids and solvent ratio) and fuel cell performance of membrane electrode assemblies (MEAs) with pentablock terpolymers as both the membrane and ionomer were also investigated. Optimization of the fuel cell operating conditions corroborates with thein situelectrochemical impedance spectroscopy results. The pentablock terpolymer MEA exhibited a maximum power density of 83.3 mW cm−2and voltage decay rate of 0.7 mV h−1after 100 h of operation under 40 °C, 100% RH. These results show promise for pentablock terptolymers with methylpyrrolidinium cations as a commercially attractive low‐cost alternative anion exchange membrane and ionomer for solid‐state alkaline fuel cells.

     
    more » « less
  2. Abstract

    Increasing catalytic activity and durability of atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction (ORR) cathode in proton‐exchange‐membrane fuel cells remains a grand challenge. Here, a high‐power and durable Co–N–C nanofiber catalyst synthesized through electrospinning cobalt‐doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X‐ray computed tomography verifies the well‐distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm−2in a practical H2/air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM‐free electrodes with improved performance and durability.

     
    more » « less
  3. During high current density operation, water production in the polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst layer can negatively affect performance by lowering mass transport of oxygen into the cathode. In this paper, a novel heat treatment process for controlling the ionic polymer/gas interface property of the fuel cell catalyst layer is investigated and then incorporated into the membrane electrode assembly (MEA) fabrication process. XPS characterization of the catalyst layer’s ionomer-gas interface at its outer surface and its sublayers’ surfaces obtained by scraping off successive layers of the catalyst layers confirms that a hydrophobic ionomer interface can be achieved across the catalyst layer using a specific heat treatment condition. Based on the results of the catalyst layer study, the MEA fabrication process is modified to identify heat treatment configuration and conditions that will create an optimal hydrophobic ionomer-gas interface inside the cathode catalyst layer. Finally, fuel cell tests conducted on the conventional and new MEAs under different operating temperatures show the performance of the fuel cells with the treated MEAs was > 130% higher than that with the conventional MEA at 25 °C and 70 °C with humidified air and > 45% higher at 70 °C with dry air. The durability of the hydrophobic treatment on the cathode catalyst layer ionomer is also confirmed by the accelerated stress test. 
    more » « less
  4. This review provides a comprehensive overview on the development of highly active and durable platinum catalysts with ultra-low Pt loadings for polymer electrolyte membrane fuel cells (PEMFCs) through a combined mathematical modeling and experimental work. First, simulation techniques were applied to evaluate the validity of the Tafel approximation for the calculation of the mass activity (MA) and specific activity (SA). A one-dimensional agglomeration model was developed and solved to understand the effects of exchange current density, porosity, agglomerate size, Nafion®film thickness, and Pt loading on the MA and SA. High porosity (> 60%) and agglomerations at high Pt loadings cause the loss of the Tafel approximation and consequently the decrease in MA and SA. A new structure parameter was introduced to estimate the real porous structure using the fractal theory. The volumetric catalyst density was corrected by the fractal dimension (measured by Hg porosimetry), which gave a good agreement with the experimental values. The loading-dependent Tafel equation was then derived, which contains both the utilization and the non-linear scaling factor. Second, activated carbon composite support (ACCS) with optimized surface area, porosity, pore size, and pore size distribution was developed. The hydrophilic/hydrophobic ratio, structural properties (amorphous/crystalline ratio), and the number of active sites were optimized through metal-catalyzed pyrolysis. Stability of ACCS and Pt/ACCS were evaluated using an accelerated stress test (AST). The results indicated that Pt/ACCS showed no significant loss of MA and power density after 5,000 cycles at 1.0–1.5 V, while the commercial Pt/C catalysts showed drastic losses of MA and power density. Finally, monolayers of compressed Pt (core–shell-type Pt3Co1) catalysts were structured by diffusing Co atoms (previously embedded in ACCS) into Pt. Compressive Pt lattice (Pt*) catalysts were synthesized through an annealing procedure developed at the University of South Carolina (USC). The Pt*/ACCS catalyst showed high initial power density (rated) of 0.174 gPtkW−1and high stability (24 mV loss) at 0.8 A cm−2after 30,000 cycles (0.6–1.0 V). The outstanding performance of Pt*/ACCS is due to the synergistic effect of ACCS and compressive Pt*lattice.

     
    more » « less
  5. Improved performance of lithium-ion batteries (LIBs) plays a critical role in the future of next- generation battery applications. Nickel-rich layered oxides such as LiNi0.8Mn0.1Co0.1O2(NMC 811), are popular cathodes due to their high energy densities. However, they suffer from high surface reactivity, which results in the formation of Li2CO3passive layer. Herein, we show the role of nanosecond pulsed laser annealing (PLA) in improving the current capacity and cycling stability of LIBs by reducing the carbonate layer, in addition to forming a protective LiF layer and manipulating the NMC 811 microstructures. We use high-power nanosecond laser pulses in a controlled way to create nanostructured surface topography which has a positive impact on the capacity retention and current capacity by providing an increased active surface area, which influences the diffusion kinetics of lithium-ions in the electrode materials during the battery cycling process. Advanced characterizations show that the PLA treatment results in the thinning of the passive Li2CO3layer, which is formed on as-received NMC811 samples, along with the decomposition of excess polyvinylidene fluoride (PVDF) binder. The high-power laser interacts with the decomposed binder and surface Li+to form LiF phase, which acts as a protective layer to prevent surface reactive sites from initiating parasitic reactions. As a result, the laser treated cathodes show relative increase of the current capacity of up to 50%, which is consistent with electrochemical measurements of LiB cells.

     
    more » « less