skip to main content

Title: Impact of Polyvinylidene Fluoride on Nanofiber Cathode Structure and Durability in Proton Exchange Membrane Fuel Cells

The impact of polyvinylidene fluoride (PVDF) as a binder component on the durability of Pt/C cathodes in a proton exchange membrane fuel cell membrane-electrode-assembly (MEA) during a carbon corrosion accelerated stress test (AST) was examined using electrochemical fuel cell data and visual inspection/analysis of the cathode morphology via electron-microscopy. Electrospun nanofiber cathode mat MEAs with a Nafion®/PVDF or Nafion/poly(acrylic acid) (PAA) binder or a slurry cathode MEA with neat Nafion or a Nafion/PVDF binder were investigated. The presence of PVDF had profound effects on the structure and chemical/electrochemical properties of a fuel cell cathode; its hydrophobic property slowed the rate of carbon loss and its robust mechanical properties added strength to the binder. Thus, the extent of carbon loss during an AST was inversely proportional to the PVDF content of the binder and there was no observable cathode thinning nor any change in cathode porosity after the AST, when the cathode binder contained at least 50 wt% PVDF. In terms of long-term durability, these beneficial structural effects outweighed the lower Nafion/PVDF binder conductivity and the associated lower initial power output of a Nafion/PVDF cathode MEA. For hydrophilic slurry and nanofiber cathodes with neat Nafion or Nafion/PAA fibers, low power after more » the carbon corrosion AST was due to greater carbon losses, cathode thinning and the collapse of cathode pores, which dominated MEA performance even though the initial cathode ECSA and mass activity were high for these two MEAs.

« less
Authors:
; ; ; ; ;
Publication Date:
NSF-PAR ID:
10303271
Journal Name:
Journal of The Electrochemical Society
Volume:
167
Issue:
5
Page Range or eLocation-ID:
Article No. 054517
ISSN:
0013-4651
Publisher:
The Electrochemical Society
Sponsoring Org:
National Science Foundation
More Like this
  1. This review provides a comprehensive overview on the development of highly active and durable platinum catalysts with ultra-low Pt loadings for polymer electrolyte membrane fuel cells (PEMFCs) through a combined mathematical modeling and experimental work. First, simulation techniques were applied to evaluate the validity of the Tafel approximation for the calculation of the mass activity (MA) and specific activity (SA). A one-dimensional agglomeration model was developed and solved to understand the effects of exchange current density, porosity, agglomerate size, Nafion®film thickness, and Pt loading on the MA and SA. High porosity (> 60%) and agglomerations at high Pt loadings cause the loss of the Tafel approximation and consequently the decrease in MA and SA. A new structure parameter was introduced to estimate the real porous structure using the fractal theory. The volumetric catalyst density was corrected by the fractal dimension (measured by Hg porosimetry), which gave a good agreement with the experimental values. The loading-dependent Tafel equation was then derived, which contains both the utilization and the non-linear scaling factor. Second, activated carbon composite support (ACCS) with optimized surface area, porosity, pore size, and pore size distribution was developed. The hydrophilic/hydrophobic ratio, structural properties (amorphous/crystalline ratio), and the number ofmore »active sites were optimized through metal-catalyzed pyrolysis. Stability of ACCS and Pt/ACCS were evaluated using an accelerated stress test (AST). The results indicated that Pt/ACCS showed no significant loss of MA and power density after 5,000 cycles at 1.0–1.5 V, while the commercial Pt/C catalysts showed drastic losses of MA and power density. Finally, monolayers of compressed Pt (core–shell-type Pt3Co1) catalysts were structured by diffusing Co atoms (previously embedded in ACCS) into Pt. Compressive Pt lattice (Pt*) catalysts were synthesized through an annealing procedure developed at the University of South Carolina (USC). The Pt*/ACCS catalyst showed high initial power density (rated) of 0.174 gPtkW−1and high stability (24 mV loss) at 0.8 A cm−2after 30,000 cycles (0.6–1.0 V). The outstanding performance of Pt*/ACCS is due to the synergistic effect of ACCS and compressive Pt*lattice.

    « less
  2. During high current density operation, water production in the polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst layer can negatively affect performance by lowering mass transport of oxygen into the cathode. In this paper, a novel heat treatment process for controlling the ionic polymer/gas interface property of the fuel cell catalyst layer is investigated and then incorporated into the membrane electrode assembly (MEA) fabrication process. XPS characterization of the catalyst layer’s ionomer-gas interface at its outer surface and its sublayers’ surfaces obtained by scraping off successive layers of the catalyst layers confirms that a hydrophobic ionomer interface can be achieved across the catalyst layer using a specific heat treatment condition. Based on the results of the catalyst layer study, the MEA fabrication process is modified to identify heat treatment configuration and conditions that will create an optimal hydrophobic ionomer-gas interface inside the cathode catalyst layer. Finally, fuel cell tests conducted on the conventional and new MEAs under different operating temperatures show the performance of the fuel cells with the treated MEAs was > 130% higher than that with the conventional MEA at 25 °C and 70 °C with humidified air and > 45% higher at 70 °C with dry air.more »The durability of the hydrophobic treatment on the cathode catalyst layer ionomer is also confirmed by the accelerated stress test.« less
  3. The urgent need to address the high-cost issue of proton-exchange membrane fuel cell (PEMFC) technologies, particularly for transportation applications, drives the development of simultaneously highly active and durable platinum group metal-free (PGM-free) catalysts and electrodes. The past decade has witnessed remarkable progress in exploring PGM-free cathode catalysts for the oxygen reduction reaction (ORR) to overcome sluggish kinetics and catalyst instability in acids. Among others, scientists have identified the newly emerging atomically dispersed transition metal (M: Fe, Co, or/and Mn) and nitrogen co-doped carbon (M–N–C) catalysts as the most promising alternative to PGM catalysts. Here, we provide a comprehensive review of significant breakthroughs, remaining challenges, and perspectives regarding the M–N–C catalysts in terms of catalyst activity, stability, and membrane electrode assembly (MEA) performance. A variety of novel synthetic strategies demonstrated effectiveness in improving intrinsic activity, increasing active site density, and attaining optimal porous structures of catalysts. Rationally designing and engineering the coordination environment of single metal MN x sites and their local structures are crucial for enhancing intrinsic activity. Increasing the site density relies on the innovative strategies of restricting the migration and agglomeration of single metal sites into metallic clusters. Relevant understandings provide the correlations among the nature of activemore »sites, nanostructures, and catalytic activity of M–N–C catalysts at the atomic scale through a combination of experimentation and theory. Current knowledge of the transferring catalytic properties of M–N–C catalysts to MEA performance is limited. Rationally designing morphologic features of M–N–C catalysts play a vital role in boosting electrode performance through exposing more accessible active sites, realizing uniform ionomer distribution, and facilitating mass/proton transports. We outline future research directions concerning the comprehensive evaluation of M–N–C catalysts in MEAs. The most considerable challenge of current M–N–C catalysts is the unsatisfied stability and rapid performance degradation in MEAs. Therefore, we further discuss practical methods and strategies to mitigate catalyst and electrode degradation, which is fundamentally essential to make M–N–C catalysts viable in PEMFC technologies.« less
  4. In Li–S batteries, the insulating nature of sulfur and Li 2 S causes enormous challenges, such as high polarization and low active material utilization. The nucleation of the solid discharge product, Li 2 S, during the discharge cycle, and the activation of Li 2 S in the subsequent charge cycle, cause a potential challenge that needs to be overcome. Moreover, the shuttling of soluble lithium polysulfide intermediate species results in active material loss and early capacity fade. In this study, we have used thiourea as an electrolyte additive and showed that it serves as both a redox mediator to overcome the Li 2 S activation energy barrier and a shuttle inhibitor to mitigate the notorious polysulfide shuttling via the investigation of thiourea redox activity, shuttle current measurements and study of Li 2 S activation. The steady-state shuttle current of the Li–S battery shows a 6-fold drop when 0.02 M thiourea is added to the standard electrolyte. Moreover, by adding thiourea, the charge plateau for the first cycle of the Li 2 S based cathodes shifts from 3.5 V (standard ether electrolyte) to 2.5 V (with 0.2 M thiourea). Using this additive, the capacity of the Li–S battery stabilizes at ∼839more »mA h g −1 after 5 cycles and remains stable over 700 cycles with a low capacity decay rate of 0.025% per cycle, a tremendous improvement compared to the reference battery that retains only ∼350 mA h g −1 after 300 cycles. In the end, to demonstrate the practical and broad applicability of thiourea in overcoming sulfur-battery challenges and in eliminating the need for complex electrode design, we study two additional battery systems – lithium metal-free cells with a graphite anode and Li 2 S cathode, and Li–S cells with simple slurry-based cathodes fabricated via blending commercial carbon black/S and a binder. We believe that this study manifests the advantages of redox active electrolyte additives to overcome several bottlenecks in the Li–S battery field.« less
  5. In this study, two green organic solvents are reported in LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC111)-based slurry preparation and subsequent cathode fabrication for Li ion batteries. NMC111, conductive carbon and poly(vinylidene fluoride) binder composite slurries prepared with methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean) and dimethyl isosorbide (DMI) exhibit mechanically stable, crack-free uniform coating structures. Both slurries showed similar shear-thinning viscosity behavior that suggests similar processibility during electrode casting and coating. When used as the cathode in Li/NMC111 half cells, the electrode slurries prepared with PolarClean show promising electrochemical performance metrics with an average specific charge capacity of 155 ± 1 mA h g −1 at C/10 over 100 cycles, comparable to the films (152 ± 3 mA h g −1 at C/10) prepared with traditional N -methyl pyrrolidone (NMP) solvent. The use of PolarClean points to a potential route to replace toxic NMP in cathode fabrication without altering the manufacturing process. However, electrodes prepared with DMI demonstrate inferior electrochemical performance with an average charge capacity of 120 mA h g −1 . Nonetheless, DMI may still offer some promising features and warrants further detailed investigation in terms of compatible electrolyte, tailoring the slurry preparation, and casting conditions.