skip to main content


Title: Specific energy cost for nitrogen fixation as NO x using DC glow discharge in air
Abstract

We report on factors influencing the specific energy costs of producing NOxfrom pin-to-pin DC glow discharges in air at atmospheric pressure. Discharge current, gap distance, gas flowrate, exterior tube wall temperature and the presence and position of activated Al2O3catalyst powder were examined. The presence of heated catalyst adjacent to the plasma zone improved energy efficiency by as much as 20% at low flows, but the most energy efficient conditions were found at the highest flowrates that allowed a stable discharge (about 10–15 l min−1). Under these conditions, the catalyst had no effect on efficiency in the present study. The lowest specific energy cost was observed to be between about 200–250 GJ/tN. The transport of active chemical species and energy are likely key factors controlling the specific energy costs of NOxproduction in the presence of a catalyst. Air plasma device design and operating conditions must ensure that plasma-generated active intermediate chemical species transport is optimally coupled with catalytically active surfaces.

 
more » « less
NSF-PAR ID:
10303273
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
53
Issue:
4
ISSN:
0022-3727
Page Range / eLocation ID:
Article No. 044002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Noble metals supported on reducible oxides, like CoOxand TiOx, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoOxsupported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoOxcatalyst as a function of reactant gas phase CO/O2stoichiometry and temperature. Under oxygen-lean conditions and moderate temperatures (≤150 °C), partially oxidized films (CoOx<1) containing Co0were found to be efficient catalysts. In contrast, stoichiometric CoO films containing only Co2+form carbonates in the presence of CO that poison the reaction below 300 °C. Under oxygen-rich conditions a more oxidized catalyst phase (CoOx>1) forms containing Co3+species that are effective in a wide temperature range. Resonant photoemission spectroscopy (ResPES) revealed the unique role of Co3+sites in catalyzing the CO oxidation. Density function theory (DFT) calculations provided deeper insights into the pathway and free energy barriers for the reactions on these oxide phases. These findings in this work highlight the versatility of catalysts and their evolution to form different active phases, both topological and chemically, in response to reaction conditions exposing a new paradigm in the catalyst structure during operation.

     
    more » « less
  2. Nanosecond Pulsed High Frequency Discharges (NPHFD) are gaining popularity over conventional spark and arc discharges as they have been shown to increase energy efficiency, enhance ignition probability and sustained kernel growth, and offer more flexibility and control for ignition applications under various conditions. Hence, it is important to determine the impact of different factors such as the optimal pulse energy, background flow conditions, inter-pulse time, mixture equivalence ratio, etc. on the success of ignition of premixed mixtures with NPHFD. This work presents a numerical investigation of the morphology of ignition kernel development with both single-pulse and multiple-pulse discharges. Nanosecond non-equilibrium plasma discharges are modeled between pin-pin electrodes in a subsonic ignition tunnel with quiescent and flowing premixed mixtures of methane and air. Large eddy simulations (LES) are conducted to investigate the reasons for successful and failed ignition in different scenarios. A single pulse discharge in the presence of electrodes, in a quiescent medium, elucidates the gas recirculation pattern caused by the plasma pulse which results in a separated toroidal kernel from the primary ignition kernel between the electrodes. Convection heat loss to the mean flow results in quenching of the high temperature, radical-rich hot-spots creeping on the electrode walls, and leaving only the semi-toroidal kernel to propagate downstream. Finally, simulations with multiple pulses with different inter-pulse times have been conducted to analyze the synergistic effect of overlapping kernels with high temperature and OH concentration, which has been attributed as the primary reason for higher ignition probabilities in the “fully coupled” regime reported in the experiments. Successful ignition kernel formation is reported with 3 pulses at a pulse repetition frequency of 300 kHz in the fully coupled regime. This kernel volume was almost 4 times, and develops in two-thirds the time, compared to the ignition kernel volume formed by the single pulse discharge with the same total energy. Ten pulses with twice as much total energy were deposited at a much lower frequency of 2 kHz, which resulted in disjoint hot-spots that fail to form an ignition kernel in the decoupled regime. 
    more » « less
  3. Abstract

    Long duration energy storage (LDES) is an economically attractive approach to accelerating clean renewable energy deployment. The newly emerged solid oxide iron–air battery (SOIAB) is intrinsically suited for LDES applications due to its excellent low‐rate performance (high‐capacity with high efficiency) and use of low‐cost and sustainable materials. However, rechargeability and durability of SOIAB are critically limited by the slow kinetics in iron/iron‐oxide redox couples. Here the use of combined proton‐conducting BaZr0.4Ce0.4Y0.1Yb0.1O3(BZC4YYb) and reduction‐promoting catalyst Ir to address the kinetic issues, is reported. It is shown that, benefiting from the facilitated H+diffusion and boosted FeOx‐reduction kinetics, the battery operated under 550 °C, 50% Fe‐utilization and 0.2 C, exhibits a discharge specific energy density of 601.9 Wh kg–1‐Fe with a round‐trip efficiency (RTE) of 82.9% for 250 h of a cycle duration of 2.5 h. Under 500 °C, 50% Fe‐utilization and 0.2 C, the same battery exhibits 520 Wh kg–1‐Fe discharge energy density with an RTE of 61.8% for 500 h. This level of energy storage performance promises that SOIAB is a strong candidate for LDES applications.

     
    more » « less
  4. Abstract

    Supercapacitors have emerged as one of the leading energy‐storage technologies due to their short charge/discharge time and exceptional cycling stability; however, the state‐of‐the‐art energy density is relatively low. Hybrid electrodes based on transition metal oxides and carbon‐based materials are considered to be promising candidates to overcome this limitation. Herein, a rational design of graphene/VOxelectrodes is proposed that incorporates vanadium oxides with multiple oxidation states onto highly conductive graphene scaffolds synthesized via a facile laser‐scribing process. The graphene/VOxelectrodes exhibit a large potential window with a high three‐electrode specific capacitance of 1110 F g–1. The aqueous graphene/VOxsymmetric supercapacitors (SSCs) can reach a high energy density of 54 Wh kg–1with virtually no capacitance loss after 20 000 cycles. Moreover, the flexible quasi‐solid‐state graphene/VOxSSCs can reach a very high energy density of 72 Wh kg–1, or 7.7 mWh cm–3, outperforming many commercial devices. WithRct < 0.02 Ω and Coulombic efficiency close to 100%, these gel graphene/VOxSSCs can retain 92% of their capacitance after 20 000 cycles. The process enables the direct fabrication of redox‐active electrodes that can be integrated with essentially any substrate including silicon wafers and flexible substrates, showing great promise for next‐generation large‐area flexible displays and wearable electronic devices.

     
    more » « less
  5. Abstract

    We have been interested in the development of rubisco‐based biomimetic systems for reversible CO2capture from air. Our design of the chemical CO2capture and release (CCR) system is informed by the understanding of the binding of the activator CO2(ACO2) in rubisco (ribulose‐1,5‐bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys‐Asp‐Asp‐Glu (or KDDE) and the Lys sidechain amine is responsible for the CO2capture reaction. We are studying the structural chemistry and the thermodynamics of CO2capture based on the tetrapeptide CH3CO−KDDE−NH2(“KDDE”) in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of1H NMR and13C NMR analyses of CO2capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of1H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG1(R) for the reaction R−NH2+CO2R−NH−COOH requires the solution of a multi‐equilibrium equation system, which accounts for the dissociation constantsK2andK3controlling carbonate and bicarbonate concentrations, the acid dissociation constantK4of the conjugated acid of the amine, and the acid dissociation constantK5of the alkylcarbamic acid. We show how the multi‐equilibrium equation system can be solved with the measurements of the daughter/parent ratioX, the knowledge of the pH values, and the initial concentrations [HCO3]0and [R‐NH2]0. For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG1(Bu)=−1.57 kcal/mol and ΔG1(KDDE)=−1.17 kcal/mol. Both CO2capture reactions are modestly exergonic and thereby ensure reversibility in an energy‐efficient manner. These results validate the hypothesis that KDDE‐type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.

     
    more » « less