skip to main content


Title: Balancing security, resilience, and sustainability of urban water supply systems in a desirable operating space
Abstract

The security, resilience, and sustainability of urban water supply systems (UWSS) are challenged by global change pressures, including climate and land use changes, rapid urbanization, and population growth. Building on prior work on UWSS security and resilience, we quantify the sustainability of UWSS based on the performance of local sustainable governance and the size of global water and ecological footprints. We develop a new framework that integrates security, resilience, and sustainability to investigate trade-offs between these three distinct and inter-related dimensions. Security refers to the level of services, resilience is the system’s ability to respond to and recover from shocks, and sustainability refers to local and global impacts, and to the long-term viability of system services. Security and resilience are both relevant at local scale (city and surroundings), while for sustainability cross-scale and -sectoral feedbacks are important. We apply the new framework to seven cities selected from diverse hydro-climatic and socio-economic settings on four continents. We find that UWSS security, resilience, and local sustainability coevolve, while global sustainability correlates negatively with security. Approaching these interdependent goals requires governance strategies that balance the three dimensions within desirable and viable operating spaces. Cities outside these boundaries risk system failure in the short-term, due to lack of security and resilience, or face long-term consequences of unsustainable governance strategies. We discuss these risks in the context of poverty and rigidity traps. Our findings have strong implications for policy-making, strategic management, and for designing systems to operate sustainably at local and global scales.

 
more » « less
NSF-PAR ID:
10303274
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 035007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cities are the drivers of socioeconomic innovation and are also forced to address the accelerating risk of failure in providing essential services such as water supply today and in the future. Here, we investigate the resilience of urban water supply security, which is defined in terms of the services that citizens receive. The resilience of services is determined by the availability and robustness of critical system elements or “capitals” (water resources, infrastructure, finances, management efficacy, and community adaptation). We translate quantitative information about this portfolio of capitals from seven contrasting cities on four continents into parameters of a coupled system dynamics model. Water services are disrupted by recurring stochastic shocks, and we simulate the dynamics of impact and recovery cycles. Resilience emerges under various constraints, expressed in terms of each city's capital portfolio. Systematic assessment of the parameter space produces the urban water resilience landscape, and we determine the position of each city along a continuous gradient from water insecure and nonresilient to secure and resilient systems. In several cities stochastic disturbance regimes challenge steady‐state conditions and drive system collapse. While water insecure and nonresilient cities risk being pushed into a poverty trap, cities which have developed excess capitals risk being trapped in rigidity and crossing a tipping point from high to low services and collapse. Where public services are insufficient, community adaptation improves water security and resilience to varying degrees. Our results highlight the need for resilience thinking in the governance of urban water systems under global change pressures.

     
    more » « less
  2. Abstract

    This special issue is the outcome of a workshop held at Purdue University in April 2022. It comprises thematic syntheses of five overarching dimensions of the Global-to-Local-to-Global (GLG) challenge to ensuring the long-term sustainability of land and water resources. These thematic dimensions include: climate change, ecosystems and biodiversity, governance, water resources and cyberinfrastructure. In addition, there are eight applications of GLG analysis to specific land and water sustainability challenges, ranging from environmental stress in the Amazon River Basin to groundwater depletion in the United States. Based on these papers, we conclude that, without fine-scale, local analysis, interventions focusing on land and water sustainability will likely be misguided. But formulating such policies without the broader, national/global context is also problematic – both from the point of view of the global drivers of local sustainability stresses, as well as to capture unanticipated spillovers. In addition, because local and global systems are connected to – and mediated by – meso-scale processes, accounting for key meso-scale phenomena, such as labor market functioning, is critical for characterizing GLG interactions. We also conclude that there is great scope for increasing the complexity of GLG analysis in future work. However, this carries significant risks. Increased complexity can outstrip data and modeling capabilities, slow down research, make results more difficult to understand and interpret, and complicate effective communication with decision-makers and other users of the analyses. We believe that research guidance regarding appropriate complexity is a high priority in the emerging field of Global-Local-Global analysis of sustainability.

     
    more » « less
  3. Abstract Urbanization and competing water demand, as well as rising temperatures and changing weather patterns, are manifesting as gradual processes that increasingly challenge urban water supply security. Cities are also threatened by acute risks arising at the intersection of aging infrastructure, entrenched institutions, and the increasing occurrence of extreme weather events. To better understand these multi-layered, interacting challenges of providing urban water supply for all, while being prepared to deal with recurring shocks, we present an integrated analysis of water supply security in New York City and its resilience to acute shocks and chronic disturbances. We apply a revised version of a recently developed, quantitative framework (‘Capital Portfolio Approach’, CPA) that takes a social-ecological-technological systems perspective to assess urban water supply security as the performance of water services at the household scale. Using the parameters of the CPA as input, we use a coupled systems dynamics model to investigate the dynamics of services in response to shocks—under current conditions and in a scenario of increasing shock occurrence and a loss of system robustness. We find water supply security to be high and current response to shocks to be resilient thanks to past shock experiences. However, we identify a number of risks and vulnerability issues that, if unaddressed, might significantly impact the city’s water services in the mid-term future. Our findings have relevance to cities around the world, and raise questions for research about how security and resilience can and should be maintained in the future. 
    more » « less
  4. Abstract

    Commons scholarship has improved our understanding of how to govern resources for sustainability. However, it has also been critiqued for its focus on traits (e.g. well-defined system boundaries) that are increasingly threatened by social and environmental trends. Fisheries are a key example of this challenge. While small-scale fisheries are critically important to the diets and livelihoods of millions, industrial fisheries from developed countries now dominate fishing around the world. While these two systems are governed separately, there is substantial overlap between them, conceptualized as the growing influence of globalization on local common pool resource (CPR) systems. One of the most impactful, but least understood consequences of this convergence are the emerging conflicts and competition between small-scale and industrial fisheries. In these systems, the interaction between small-scale CPRs and globalized commodity chains has meant the creation of a new, hybrid resource system, addressed by neither conventional industrial nor traditional small-scale governance approaches. We use empirical data from 396 cases of interactions at sea between globalized industrial and local small-scale fishers in Ghana from 1984 to 2013 to examine the conditions under which resource users conflict or cooperate, linking them to broader political and economic dynamics across scales. We consider the institutional factors that mediate these interactions, identifying policies to promote cooperative, and avert conflictual incidents. We further consider the long-term effects of these patterns of conflict and cooperation for the resilience or vulnerability of the resource base, the fishers, and the institutions governing the system. We suggest that specific governance arrangements that reduce disparities between groups, promote bridging social capital, and enhance hybrid and cross-scale institutions offer the best potential to govern resource systems where traditional CPRs and market-oriented industries converge.

     
    more » « less
  5. Abstract

    A primary challenge in advancing sustainability in rangelands and drylands is the lack of governance systems that are linked to information about highly variable ecosystem conditions. Here, we describe the national‐scale implementation of a resilience‐based management system in the rangelands of Mongolia. The system comprises several interacting elements. Land type‐specific information about rangeland conditions was captured in vegetation state‐and‐transition models (STMs) that allow interpretation of monitoring data and locally tailored restoration recommendations. Rangeland monitoring systems based on standardized protocols were developed and have been adopted by national government agencies, which provide annual, high‐quality data on rangeland conditions on which to base and adjust management decisions. Rangeland use agreements between local governments and herders' collective organizations, called Pasture Users' Groups, define their respective rights and responsibilities and introduce economic and policy incentives for management changes. Pasture Users' Groups also provide a platform for information sharing and collective action. Rangeland condition data and other indicators are linked to the Responsible Nomads product traceability system that provides consumers and industry a means to associate products with sustainable rangeland management practices. The collaboration between national agencies, international donors, scientists, and herders has been essential to initial success, but longer term support and monitoring will be needed to assess whether the adoption of resilience‐based management leads to positive social and ecological outcomes. We draw generalizations and lessons learned from this effort, which can lead to the successful implementation of new management systems across global rangelands.

     
    more » « less