skip to main content


Title: Effect of grid resolution and spatial representation of NH 3 emissions from fertilizer application on predictions of NH 3 and PM 2.5 concentrations in the United States Corn Belt
Abstract

Ammonia (NH3) emissions from fertilizer application is a highly uncertain input to chemical transport models (CTMs). Reducing such uncertainty is important for improving predictions of ambient NH3and PM2.5concentrations, for regulatory and policy purposes and for exploring linkages of air pollution to human health and ecosystem services. Here, we implement a spatially and temporally resolved inventory of NH3emissions from fertilizers, based on high-resolution crop maps, crop nitrogen demand and a process model, as input to the Comprehensive Air Quality Model with Extensions (CAMx). We also examine sensitivity to grid resolution, by developing inputs at 12 km × 12 km and 4 km × 4 km, for the Corn Belt region in the Midwest United States, where NH3emissions from chemical fertilizer application contributes to approximately 50% of anthropogenic emissions. Resulting predictions of ambient NH3and PM2.5concentrations were compared to predictions developed using the baseline 2011 National Emissions Inventory, and evaluated for closure with ground observations for May 2011. While CAMx consistently underpredicted NH3concentrations for all scenarios, the new emissions inventory reduced bias in ambient NH3concentration by 33% at 4 km × 4 km, and modestly improved predictions of PM2.5, at 12 km × 12 km (correlation coefficients r = 0.57 for PM2.5, 0.88 for PM-NH4, 0.71 for PM-SO4, 0.52 for PM-NO3). Our findings indicate that in spite of controlling for total magnitude of emissions and for meteorology, representation of NH3emissions and choice of grid resolution within CAMx impacts the total magnitude and spatial patterns of predicted ambient NH3and PM2.5concentrations. This further underlines the need for improvements in NH3emission inventories. For future research, our results also point to the need for better understanding of the effect of model spatial resolution with regard to both meteorology and chemistry in CTMs, as grid size becomes finer.

 
more » « less
NSF-PAR ID:
10303281
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Communications
Volume:
2
Issue:
2
ISSN:
2515-7620
Page Range / eLocation ID:
Article No. 025001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global economic development and urbanization during the past two decades have driven the increases in demand of personal and commercial vehicle fleets, especially in developing countries, which has likely resulted in changes in year-to-year vehicle tailpipe emissions associated with aerosols and trace gases. However, long-term trends of impacts of global gasoline and diesel emissions on air quality and human health are not clear. In this study, we employ the Community Earth System Model in conjunction with the newly developed Community Emissions Data System as anthropogenic emission inventory to quantify the long-term trends of impacts of global gasoline and diesel emissions on ambient air quality and human health for the period of 2000–2015. Global gasoline and diesel emissions contributed to regional increases in annual mean surface PM2.5(particulate matter with aerodynamic diameters ⩽2.5μm) concentrations by up to 17.5 and 13.7µg m−3, and surface ozone (O3) concentrations by up to 7.1 and 7.2 ppbv, respectively, for 2000–2015. However, we also found substantial declines of surface PM2.5and O3concentrations over Europe, the US, Canada, and China for the same period, which suggested the co-benefits of air quality and human health from improving gasoline and diesel fuel quality and tightening vehicle emissions standards. Globally, we estimate the mean annual total PM2.5- and O3-induced premature deaths are 139 700–170 700 for gasoline and 205 200–309 300 for diesel, with the corresponding years of life lost of 2.74–3.47 and 4.56–6.52 million years, respectively. Diesel and gasoline emissions create health-effect disparities between the developed and developing countries, which are likely to aggravate afterwards.

     
    more » « less
  2. Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may leach legacy P from past cropland management. Experimental details The Biofuel Cropping System Experiment (BCSE) is located at the W.K. Kellogg Biological Station (KBS) (42.3956° N, 85.3749° W; elevation 288 m asl) in southwestern Michigan, USA. This site is a part of the Great Lakes Bioenergy Research Center (www.glbrc.org) and is a Long-term Ecological Research site (www.lter.kbs.msu.edu). Soils are mesic Typic Hapludalfs developed on glacial outwash54 with high sand content (76% in the upper 150 cm) intermixed with silt-rich loess in the upper 50 cm55. The water table lies approximately 12–14 m below the surface. The climate is humid temperate with a mean annual air temperature of 9.1 °C and annual precipitation of 1005 mm, 511 mm of which falls between May and September (1981–2010)56,57. The BCSE was established as a randomized complete block design in 2008 on preexisting farmland. Prior to BCSE establishment, the field was used for grain crop and alfalfa (Medicago sativa L.) production for several decades. Between 2003 and 2007, the field received a total of ~ 300 kg P ha−1 as manure, and the southern half, which contains one of four replicate plots, received an additional 206 kg P ha−1 as inorganic fertilizer. The experimental design consists of five randomized blocks each containing one replicate plot (28 by 40 m) of 10 cropping systems (treatments) (Supplementary Fig. S1; also see Sanford et al.58). Block 5 is not included in the present study. Details on experimental design and site history are provided in Robertson and Hamilton57 and Gelfand et al.59. Leaching of P is analyzed in six of the cropping systems: (i) continuous no-till corn, (ii) switchgrass, (iii) miscanthus, (iv) a mixture of five species of native grasses, (v) a restored native prairie containing 18 plant species (Supplementary Table S1), and (vi) hybrid poplar. Agronomic management Phenological cameras and field observations indicated that the perennial herbaceous crops emerged each year between mid-April and mid-May. Corn was planted each year in early May. Herbaceous crops were harvested at the end of each growing season with the timing depending on weather: between October and November for corn and between November and December for herbaceous perennial crops. Corn stover was harvested shortly after corn grain, leaving approximately 10 cm height of stubble above the ground. The poplar was harvested only once, as the culmination of a 6-year rotation, in the winter of 2013–2014. Leaf emergence and senescence based on daily phenological images indicated the beginning and end of the poplar growing season, respectively, in each year. Application of inorganic fertilizers to the different crops followed a management approach typical for the region (Table 1). Corn was fertilized with 13 kg P ha−1 year−1 as starter fertilizer (N-P-K of 19-17-0) at the time of planting and an additional 33 kg P ha−1 year−1 was added as superphosphate in spring 2015. Corn also received N fertilizer around the time of planting and in mid-June at typical rates for the region (Table 1). No P fertilizer was applied to the perennial grassland or poplar systems (Table 1). All perennial grasses (except restored prairie) were provided 56 kg N ha−1 year−1 of N fertilizer in early summer between 2010 and 2016; an additional 77 kg N ha−1 was applied to miscanthus in 2009. Poplar was fertilized once with 157 kg N ha−1 in 2010 after the canopy had closed. Sampling of subsurface soil water and soil for P determination Subsurface soil water samples were collected beneath the root zone (1.2 m depth) using samplers installed at approximately 20 cm into the unconsolidated sand of 2Bt2 and 2E/Bt horizons (soils at the site are described in Crum and Collins54). Soil water was collected from two kinds of samplers: Prenart samplers constructed of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) in replicate blocks 1 and 2 and Eijkelkamp ceramic samplers (http://www.eijkelkamp.com) in blocks 3 and 4 (Supplementary Fig. S1). The samplers were installed in 2008 at an angle using a hydraulic corer, with the sampling tubes buried underground within the plots and the sampler located about 9 m from the plot edge. There were no consistent differences in TDP concentrations between the two sampler types. Beginning in the 2009 growing season, subsurface soil water was sampled at weekly to biweekly intervals during non-frozen periods (April–November) by applying 50 kPa of vacuum to each sampler for 24 h, during which the extracted water was collected in glass bottles. Samples were filtered using different filter types (all 0.45 µm pore size) depending on the volume of leachate collected: 33-mm dia. cellulose acetate membrane filters when volumes were less than 50 mL; and 47-mm dia. Supor 450 polyethersulfone membrane filters for larger volumes. Total dissolved phosphorus (TDP) in water samples was analyzed by persulfate digestion of filtered samples to convert all phosphorus forms to soluble reactive phosphorus, followed by colorimetric analysis by long-pathlength spectrophotometry (UV-1800 Shimadzu, Japan) using the molybdate blue method60, for which the method detection limit was ~ 0.005 mg P L−1. Between 2009 and 2016, soil samples (0–25 cm depth) were collected each autumn from all plots for determination of soil test P (STP) by the Bray-1 method61, using as an extractant a dilute hydrochloric acid and ammonium fluoride solution, as is recommended for neutral to slightly acidic soils. The measured STP concentration in mg P kg−1 was converted to kg P ha−1 based on soil sampling depth and soil bulk density (mean, 1.5 g cm−3). Sampling of water samples from lakes, streams and wells for P determination In addition to chemistry of soil and subsurface soil water in the BCSE, waters from lakes, streams, and residential water supply wells were also sampled during 2009–2016 for TDP analysis using Supor 450 membrane filters and the same analytical method as for soil water. These water bodies are within 15 km of the study site, within a landscape mosaic of row crops, grasslands, deciduous forest, and wetlands, with some residential development (Supplementary Fig. S2, Supplementary Table S2). Details of land use and cover change in the vicinity of KBS are given in Hamilton et al.48, and patterns in nutrient concentrations in local surface waters are further discussed in Hamilton62. Leaching estimates, modeled drainage, and data analysis Leaching was estimated at daily time steps and summarized as total leaching on a crop-year basis, defined from the date of planting or leaf emergence in a given year to the day prior to planting or emergence in the following year. TDP concentrations (mg L−1) of subsurface soil water were linearly interpolated between sampling dates during non-freezing periods (April–November) and over non-sampling periods (December–March) based on the preceding November and subsequent April samples. Daily rates of TDP leaching (kg ha−1) were calculated by multiplying concentration (mg L−1) by drainage rates (m3 ha−1 day−1) modeled by the Systems Approach for Land Use Sustainability (SALUS) model, a crop growth model that is well calibrated for KBS soil and environmental conditions. SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, N fertilizer application, and tillage), and genetics63. The SALUS water balance sub-model simulates surface runoff, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons63. The SALUS model has been used in studies of evapotranspiration48,51,64 and nutrient leaching20,65,66,67 from KBS soils, and its predictions of growing-season evapotranspiration are consistent with independent measurements based on growing-season soil water drawdown53 and evapotranspiration measured by eddy covariance68. Phosphorus leaching was assumed insignificant on days when SALUS predicted no drainage. Volume-weighted mean TDP concentrations in leachate for each crop-year and for the entire 7-year study period were calculated as the total dissolved P leaching flux (kg ha−1) divided by the total drainage (m3 ha−1). One-way ANOVA with time (crop-year) as the fixed factor was conducted to compare total annual drainage rates, P leaching rates, volume-weighted mean TDP concentrations, and maximum aboveground biomass among the cropping systems over all seven crop-years as well as with TDP concentrations from local lakes, streams, and groundwater wells. When a significant (α = 0.05) difference was detected among the groups, we used the Tukey honest significant difference (HSD) post-hoc test to make pairwise comparisons among the groups. In the case of maximum aboveground biomass, we used the Tukey–Kramer method to make pairwise comparisons among the groups because the absence of poplar data after the 2013 harvest resulted in unequal sample sizes. We also used the Tukey–Kramer method to compare the frequency distributions of TDP concentrations in all of the soil leachate samples with concentrations in lakes, streams, and groundwater wells, since each sample category had very different numbers of measurements. Individual spreadsheets in “data table_leaching_dissolved organic carbon and nitrogen.xls” 1.    annual precip_drainage 2.    biomass_corn, perennial grasses 3.    biomass_poplar 4.    annual N leaching _vol-wtd conc 5.    Summary_N leached 6.    annual DOC leachin_vol-wtd conc 7.    growing season length 8.    correlation_nh4 VS no3 9.    correlations_don VS no3_doc VS don Each spreadsheet is described below along with an explanation of variates. Note that ‘nan’ indicate data are missing or not available. First row indicates header; second row indicates units 1. Spreadsheet: annual precip_drainage Description: Precipitation measured from nearby Kellogg Biological Station (KBS) Long Term Ecological Research (LTER) Weather station, over 2009-2016 study period. Data shown in Figure 1; original data source for precipitation (https://lter.kbs.msu.edu/datatables/7). Drainage estimated from SALUS crop model. Note that drainage is percolation out of the root zone (0-125 cm). Annual precipitation and drainage values shown here are calculated for growing and non-growing crop periods. Variate    Description year    year of the observation crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” precip_G    precipitation during growing period (milliMeter) precip_NG    precipitation during non-growing period (milliMeter) drainage_G    drainage during growing period (milliMeter) drainage_NG    drainage during non-growing period (milliMeter)      2. Spreadsheet: biomass_corn, perennial grasses Description: Maximum aboveground biomass measurements from corn, switchgrass, miscanthus, native grass and restored prairie plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2.   Variate    Description year    year of the observation date    day of the observation (mm/dd/yyyy) crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” replicate    each crop has four replicated plots, R1, R2, R3 and R4 station    stations (S1, S2 and S3) of samplings within the plot. For more details, refer to link (https://data.sustainability.glbrc.org/protocols/156) species    plant species that are rooted within the quadrat during the time of maximum biomass harvest. See protocol for more information, refer to link (http://lter.kbs.msu.edu/datatables/36) For maize biomass, grain and whole biomass reported in the paper (weed biomass or surface litter are excluded). Surface litter biomass not included in any crops; weed biomass not included in switchgrass and miscanthus, but included in grass mixture and prairie. fraction    Fraction of biomass biomass_plot    biomass per plot on dry-weight basis (Grams_Per_SquareMeter) biomass_ha    biomass (megaGrams_Per_Hectare) by multiplying column biomass per plot with 0.01 3. Spreadsheet: biomass_poplar Description: Maximum aboveground biomass measurements from poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Note that poplar biomass was estimated from crop growth curves until the poplar was harvested in the winter of 2013-14. Variate    Description year    year of the observation method    methods of poplar biomass sampling date    day of the observation (mm/dd/yyyy) replicate    each crop has four replicated plots, R1, R2, R3 and R4 diameter_at_ground    poplar diameter (milliMeter) at the ground diameter_at_15cm    poplar diameter (milliMeter) at 15 cm height biomass_tree    biomass per plot (Grams_Per_Tree) biomass_ha    biomass (megaGrams_Per_Hectare) by multiplying biomass per tree with 0.01 4. Spreadsheet: annual N leaching_vol-wtd conc Description: Annual leaching rate (kiloGrams_N_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_N_Per_Liter) of nitrate (no3) and dissolved organic nitrogen (don) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen leached and volume-wtd mean N concentration shown in Figure 3a and Figure 3b, respectively. Note that ammonium (nh4) concentration were much lower and often undetectable (<0.07 milliGrams_N_Per_Liter). Also note that in 2009 and 2010 crop-years, data from some replicates are missing.    Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year    year of the observation replicate    each crop has four replicated plots, R1, R2, R3 and R4 no3 leached    annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached    annual leaching rates of don (kiloGrams_N_Per_Hectare) vol-wtd no3 conc.    Volume-weighted mean no3 concentration (milliGrams_N_Per_Liter) vol-wtd don conc.    Volume-weighted mean don concentration (milliGrams_N_Per_Liter) 5. Spreadsheet: summary_N leached Description: Summary of total amount and forms of N leached (kiloGrams_N_Per_Hectare) and the percent of applied N lost to leaching over the seven years for corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen amount leached shown in Figure 4a and percent of applied N lost shown in Figure 4b. Note the fraction of unleached N includes in harvest, accumulation in root biomass, soil organic matter or gaseous N emissions were not measured in the study. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” no3 leached    annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached    annual leaching rates of don (kiloGrams_N_Per_Hectare) N unleached    N unleached (kiloGrams_N_Per_Hectare) in other sources are not studied % of N applied N lost to leaching    % of N applied N lost to leaching 6. Spreadsheet: annual DOC leachin_vol-wtd conc Description: Annual leaching rate (kiloGrams_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_Per_Liter) of dissolved organic carbon (DOC) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for DOC leached and volume-wtd mean DOC concentration shown in Figure 5a and Figure 5b, respectively. Note that in 2009 and 2010 crop-years, water samples were not available for DOC measurements.     Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year    year of the observation replicate    each crop has four replicated plots, R1, R2, R3 and R4 doc leached    annual leaching rates of nitrate (kiloGrams_Per_Hectare) vol-wtd doc conc.    volume-weighted mean doc concentration (milliGrams_Per_Liter) 7. Spreadsheet: growing season length Description: Growing season length (days) of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in the Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Date shown in Figure S2. Note that growing season is from the date of planting or emergence to the date of harvest (or leaf senescence in case of poplar).   Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year    year of the observation growing season length    growing season length (days) 8. Spreadsheet: correlation_nh4 VS no3 Description: Correlation of ammonium (nh4+) and nitrate (no3-) concentrations (milliGrams_N_Per_Liter) in the leachate samples from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data shown in Figure S3. Note that nh4+ concentration in the leachates was very low compared to no3- and don concentration and often undetectable in three crop-years (2013-2015) when measurements are available. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” date    date of the observation (mm/dd/yyyy) replicate    each crop has four replicated plots, R1, R2, R3 and R4 nh4 conc    nh4 concentration (milliGrams_N_Per_Liter) no3 conc    no3 concentration (milliGrams_N_Per_Liter)   9. Spreadsheet: correlations_don VS no3_doc VS don Description: Correlations of don and nitrate concentrations (milliGrams_N_Per_Liter); and doc (milliGrams_Per_Liter) and don concentrations (milliGrams_N_Per_Liter) in the leachate samples of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data of correlation of don and nitrate concentrations shown in Figure S4 a and doc and don concentrations shown in Figure S4 b. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year    year of the observation don    don concentration (milliGrams_N_Per_Liter) no3     no3 concentration (milliGrams_N_Per_Liter) doc    doc concentration (milliGrams_Per_Liter) 
    more » « less
  3. Abstract. The impact of biomass burning (BB) on the atmospheric burden of volatile organic compounds (VOCs) is highly uncertain. Here we apply the GEOS-Chemchemical transport model (CTM) to constrain BB emissions in the western USA at ∼ 25 km resolution. Across three BB emission inventorieswidely used in CTMs, the inventory–inventory comparison suggests that the totals of 14 modeled BB VOC emissions in the western USA agree with eachother within 30 %–40 %. However, emissions for individual VOCs can differ by a factor of 1–5, driven by the regionally averaged emissionratios (ERs, reflecting both assigned ERs for specific biome and vegetation classifications) across the three inventories. We further evaluate GEOS-Chemsimulations with aircraft observations made during WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) andFIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaigns. Despite being driven by different global BBinventories or applying various injection height assumptions, the model–observation comparison suggests that GEOS-Chem simulations underpredictobserved vertical profiles by a factor of 3–7. The model shows small to no bias for most species in low-/no-smoke conditions. We thus attribute thenegative model biases mostly to underestimated BB emissions in these inventories. Tripling BB emissions in the model reproduces observed verticalprofiles for primary compounds, i.e., CO, propane, benzene, and toluene. However, it shows no to less significant improvements for oxygenatedVOCs, particularly for formaldehyde, formic acid, acetic acid, and lumped ≥ C3 aldehydes, suggesting the model is missing secondarysources of these compounds in BB-impacted environments. The underestimation of primary BB emissions in inventories is likely attributable tounderpredicted amounts of effective dry matter burned, rather than errors in fire detection, injection height, or ERs, as constrained by aircraftand ground measurements. We cannot rule out potential sub-grid uncertainties (i.e., not being able to fully resolve fire plumes) in the nestedGEOS-Chem which could explain the negative model bias partially, though back-of-the-envelope calculation and evaluation using longer-term groundmeasurements help support the argument of the dry matter burned underestimation. The total ERs of the 14 BB VOCs implemented in GEOS-Chem onlyaccount for half of the total 161 measured VOCs (∼ 75 versus 150 ppb ppm−1). This reveals a significant amount of missing reactiveorganic carbon in widely used BB emission inventories. Considering both uncertainties in effective dry matter burned (× 3) and unmodeledVOCs (× 2), we infer that BB contributed to 10 % in 2019 and 45 % in 2018 (240 and 2040 Gg C) of the total VOC primaryemission flux in the western USA during these two fire seasons, compared to only 1 %–10 % in the standard GEOS-Chem. 
    more » « less
  4. Abstract

    This paper examines the accuracy of Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) generated 72 hr fine particulate matter (PM2.5) forecasts in Delhi during the crop residue burning season of October‐November 2017 with respect to assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals, persistent fire emission assumption, and aerosol‐radiation interactions. The assimilation significantly pushes the model AOD and PM2.5toward the observations with the largest changes below 5 km altitude in the fire source regions (northeastern Pakistan, Punjab, and Haryana) as well as the receptor New Delhi. WRF‐Chem forecast with MODIS AOD assimilation, aerosol‐radiation feedback turned on, and real‐time fire emissions reduce the mean bias by 88–195 μg/m3(70–86%) with the largest improvement during the peak air pollution episode of 6–13 November 2017. Aerosol‐radiation feedback contributes ~21%, ~25%, and ~24% to reduction in mean bias of the first, second, and third days of PM2.5forecast. Persistence fire emission assumption is found to work really well, as the accuracy of PM2.5forecasts driven by persistent fire emissions was only 6% lower compared to those driven by real fire emissions. Aerosol‐radiation feedback extends the benefits of assimilating satellite AOD beyond PM2.5forecasts to surface temperature forecast with a reduction in the mean bias of 0.9–1.5°C (17–30%). These results demonstrate that air quality forecasting can benefit substantially from satellite AOD observations particularly in developing countries that lack resources to rapidly build dense air quality monitoring networks.

     
    more » « less
  5. Abstract

    Excessive ammonia (NH3) emitted from nitrogen (N) fertilizer applications in global croplands plays an important role in atmospheric aerosol production, resulting in visibility reduction and regional haze. However, large uncertainty exists in the estimates of NH3emissions from global and regional croplands, which utilize different data and methods. In this study, we have coupled a process‐based Dynamic Land Ecosystem Model (DLEM) with the bidirectional NH3exchange module in the Community Multiscale Air‐Quality (CMAQ) model (DLEM‐Bi‐NH3) to quantify NH3emissions at the global and regional scale, and crop‐specific NH3emissions globally at a spatial resolution of 0.5° × 0.5° during 1961–2010. Results indicate that global NH3emissions from N fertilizer use have increased from 1.9 ± 0.03 to 16.7 ± 0.5 Tg N/year between 1961 and 2010. The annual increase of NH3emissions shows large spatial variations across the global land surface. Southern Asia, including China and India, has accounted for more than 50% of total global NH3emissions since the 1980s, followed by North America and Europe. Rice cultivation has been the largest contributor to total global NH3emissions since the 1990s, followed by corn and wheat. In addition, results show that empirical methods without considering environmental factors (constant emission factor in the IPCC Tier 1 guideline) could underestimate NH3emissions in context of climate change, with the highest difference (i.e., 6.9 Tg N/year) occurring in 2010. This study provides a robust estimate on global and regional NH3emissions over the past 50 years, which offers a reference for assessing air quality consequences of future nitrogen enrichment as well as nitrogen use efficiency improvement.

     
    more » « less