skip to main content

Title: Ion energy control via the electrical asymmetry effect to tune coating properties in reactive radio frequency sputtering

A knowledge-based understanding of the plasma-surface-interaction with the aim to precisely control (reactive) sputtering processes for the deposition of thin films with tailored and reproducible properties is highly desired for industrial applications. In order to understand the effect of plasma parameter variations on the film properties, a single plasma parameter needs to be varied, while all other process and plasma parameters should remain constant. In this work, we use the Electrical Asymmetry Effect in a multi-frequency capacitively coupled plasma to control the ion energy at the substrate without affecting the ion-to-growth flux ratio by adjusting the relative phase between two consecutive driving harmonics and their voltage amplitudes. Measurements of the ion energy distribution function and ion flux at the substrate by a retarding field energy analyzer combined with the determined deposition rateRdfor a reactive Ar/N2(8:1) plasma at 0.5 Pa show a possible variation of the mean ion energy at the substrateEmigwithin a range of 38 and 81 eV that allows the modification of the film characteristics at the grounded electrode, when changing the relative phase shiftθbetween the applied voltage frequencies, while the ion-to-growth flux ratio Γiggrcan be kept constant. AlN thin films are deposited and exhibit an increase in more » compressive film stress from −5.8 to −8.4 GPa as well as an increase in elastic modulus from 175 to 224 GPa as a function of the mean ion energy. Moreover, a transition from the preferential orientation (002) at low ion energies to the (100), (101) and (110) orientations at higher ion energies is observed. In this way, the effects of the ion energy on the growing film are identified, while other process relevant parameters remain unchanged.

« less
; ; ; ; ; ; ;
Publication Date:
Journal Name:
Plasma Sources Science and Technology
Page Range or eLocation-ID:
Article No. 114001
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2more »thin films were compared.« less
  2. Abstract

    We report bias enhanced nucleation and growth of boron-rich deposits through systematic study of the effect of a negative direct current substrate bias during microwave plasma chemical vapor deposition. The current flowing through a silicon substrate with an applied bias of −250 V was investigated for a feedgas containing fixed hydrogen (H2) flow rate but with varying argon (Ar) flow rates for 1330, 2670, and 4000 Pa chamber pressure. For 1330 and 2670 Pa, the bias current goes through a maximum with increasing Ar flow rate. This maximum current also corresponds to a peak in substrate temperature. However, at 4000 Pa, no maximum in bias current or substrate temperature is observed for the range of argon flow rates tested. Using these results, substrate bias pre-treatment experiments were performed at 1330 Pa in an Ar/H2plasma, yielding the maximum bias current. Nucleation density of boron deposits were measured after subsequent exposure to B2H6in H2plasma and found to be a factor of 200 times higher than when no bias and no Ar was used. Experiments were repeated at 2670 and 4000 Pa (fixed bias voltage and Ar flow rate) in order to test the effect of chamber pressure on the nucleation density.more »Compared to 4000 Pa, we find nearly 7 times higher boron nucleation densities for both 1330 and 2670 Pa when the substrate was negatively biased in the Ar/H2plasma. Results are explained by incorporating measurements of plasma optical emission and by use of heterogeneous nucleation theory. The optimal conditions at 1330 Pa for nucleation were used to grow boron-rich amorphous films with measured hardness as high as 58 GPa, well above the 40 GPa threshold for superhardness.

    « less
  3. Cyclic voltammetry was applied to investigate the permselective properties of electrode-supported ion-exchange polymer films intended for use in future molecular-scale spectroscopic studies of bipolar membranes. The ability of thin ionomer film assemblies to exclude mobile ions charged similarly to the polymer (co-ions) and accumulate ions charged opposite to the polymer (counterions) was scrutinized through use of the diffusible redox probe molecules [Ru(NH3)6]3+and [IrCl6]2−. With the anion exchange membrane (AEM) phase supported on a carbon disk electrode, bipolar junctions formed by addition of a cation exchange membrane (CEM) overlayer demonstrated high selectivity toward redox ion extraction and exclusion. For junctions formed using a Fumion®AEM phase and a Nafion®overlayer, [IrCl6]2−ions exchanged into Fumion®prior to Nafion®overcoating remained entrapped and the Fumion®excluded [Ru(NH3)6]3+ions for durability testing periods of more than 20 h under conditions of interest for eventualin situspectral measurements. Experiments with the Sustainion®anion exchange ionomer uncovered evidence for [IrCl6]2−ion coordination to pendant imidazolium groups on the polymer. A cyclic voltammetric method for estimation of the effective diffusion coefficient and equilibrium extraction constant for redox active probe ions within inert, uniform density electrode-supported thin films was applied to examine charge transport mechanisms.

  4. Herein, we describe an atomic layer deposition (ALD) system that is optimized for the growth of thin films on high-surface-area, porous materials. The system incorporates a moveable dual-zone furnace allowing for rapid transfer of a powder substrate between heating zones whose temperatures are optimized for precursor adsorption and oxidative removal of the precursor ligands. The reactor can both be evacuated, eliminating the need for a carrier gas during precursor exposure, and rotated, to enhance contact between a powder support and the gas phase, both of which help us to minimize mass transfer limitations in the pores during film growth. The capabilities of the ALD system were demonstrated by growing La2O3, Fe2O3, and LaFeO3films on a 120 m2 g−1MgAl2O4powder. Analysis of these films using scanning transmission electron microscopy and temperature-programmed desorption of 2-propanol confirmed the conformal nature of the oxide films.

  5. Many biological lab-on-a-chip applications require electrical and optical manipulation as well as detection of cells and biomolecules. This provides an intriguing challenge to design robust microdevices that resist adverse electrochemical side reactions yet achieve optical transparency. Physical isolation of biological samples from microelectrodes can prevent contamination, electrode fouling, and electrochemical byproducts; thus this manuscript explores hafnium oxide (HfO2) films - originating from traditional transistor applications – for suitability in electrokinetic microfluidic devices for biological applications. HfO2 films with deposition times of 6.5, 13, and 20 min were sputter deposited onto silicon and glass substrates. The structural, optical, and electrical properties of the HfO2 films were investigated using atomic force microscopy (AFM), X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, ellipsometry, and capacitance voltage. Electric potential simulations of the HfO2 films and a biocompatibility study provided additional insights. Film grain size after corrosive Piranha treatment was observed via AFM. The crystalline structure investigated via X-ray diffraction revealed all films exhibited the (111) characteristic peak with thicker films exhibiting multiple peaks indicative of anisotropic structures. Energy dispersive X-ray spectroscopy via field emission scanning electron microscopy and Fourier transform infrared spectroscopy both corroborated the atomic ratio of the films as HfO2. Ellipsometrymore »data from Si yielded thicknesses of 58, 127, and 239 nm and confirmed refractive index and extinction coefficients within the normal range for HfO2; glass data yielded unreliable thickness verifications due to film and substrate transparency. Capacitance-voltage results produced an average dielectric constant of 20.32, and the simulations showed that HfO2 dielectric characteristics were sufficient to electrically passivate planar microelectrodes. HfO2 biocompatibility was determined with human red blood cells by quantifying the hemolytic potential of the HfO2 films. Overall results support hafnium oxide as a viable passivation material for biological lab-on-a-chip applications.« less