skip to main content


Title: An ultra-compact x-ray free-electron laser
Abstract

In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV m−1. Such an approach is foreseen to enable a new generation of photoinjectors with six-dimensional beam brightness beyond the current state-of-the-art by well over an order of magnitude. This advance is an essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one may accelerate these bright beams to GeV scale in less than 10 m. Such an injector, when combined with inverse free electron laser-based bunching techniques can produce multi-kA beams with unprecedented beam quality, quantified by 50 nm-rad normalized emittances. The emittance, we note, is the effective area in transverse phase space (x,px/mec) or (y,py/mec) occupied by the beam distribution, and it is relevant to achievable beam sizes as well as setting a limit on FEL wavelength. These beams, when injected into innovative, short-period (1–10 mm) undulators uniquely enable UC-XFELs having footprints consistent with university-scale laboratories. We describe the architecture and predicted performance of this novel light source, which promises photon production per pulse of a few percent of existing XFEL sources. We review implementation issues including collective beam effects, compact x-ray optics systems, and other relevant technical challenges. To illustrate the potential of such a light source to fundamentally change the current paradigm of XFELs with their limited access, we examine possible applications in biology, chemistry, materials, atomic physics, industry, and medicine—including the imaging of virus particles—which may profit from this new model of performing XFEL science.

 
more » « less
NSF-PAR ID:
10303684
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
22
Issue:
9
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 093067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. X-ray free electron lasers (XFELs) provide femtosecond high-power x-ray beams with high spatial coherence, resulting in numerous influential discoveries. Diffractive optics allow for the easy manipulation and measurement of an x-ray beam’s wavefront and enable the realization of complex designed properties and specifications. For example, phase gratings can be used as x-ray beam splitters to enable beam sharing by multiple end stations or in-situ beam monitoring, including spectrum and wavefront measurements. Wavefront preservation and high efficiency and survivability under high power are requirements for such beam splitters. Diamond is the most suitable choice for phase grating fabrication, due to its high thermal conductivity that enables it to survive high average power XFEL beams. We have fabricated a large area (2×2 mm2) high aspect ratio (13:1) diamond grating on a diamond plate. Testing was performed at 9.5 keV and resulted in a high splitting efficiency (30%). Tunable efficiency was obtained via tilting the grating with respect to the x-ray beam. Wavefront fidelity of the split beams were measured to less thanλ/100 using a Talbot wavefront sensor.

     
    more » « less
  2. Abstract The longitudinal coherence of X-ray free-electron lasers (XFELs) in the self-amplified spontaneous emission regime could be substantially improved if the high brightness electron beam could be pre-bunched on the radiated wavelength-scale. Here, we show that it is indeed possible to realize such current modulated electron beam at angstrom scale by exciting a nonlinear wake across a periodically modulated plasma-density downramp/plasma cathode. The density modulation turns on and off the injection of electrons in the wake while downramp provides a unique longitudinal mapping between the electrons’ initial injection positions and their final trapped positions inside the wake. The combined use of a downramp and periodic modulation of micrometers is shown to be able to produces a train of high peak current (17 kA) electron bunches with a modulation wavelength of 10’s of angstroms - orders of magnitude shorter than the plasma density modulation. The peak brightness of the nano-bunched beam can be O (10 21 A/m 2 /rad 2 ) orders of magnitude higher than current XFEL beams. Such prebunched, high brightness electron beams hold the promise for compact and lower cost XEFLs that can produce nanometer radiation with hundreds of GW power in a 10 s of centimeter long undulator. 
    more » « less
  3. Abstract

    Knowledge of x-ray free electron lasers’ (XFELs) pulse characteristics delivered to a sample is crucial for ensuring high-quality x-rays for scientific experiments. XFELs’ self-amplified spontaneous emission process causes spatial and spectral variations in x-ray pulses entering a sample, which leads to measurement uncertainties for experiments relying on multiple XFEL pulses. Accurate in-situ measurements of x-ray wavefront and energy spectrum incident upon a sample poses challenges. Here we address this by developing a virtual diagnostics framework using an artificial neural network (ANN) to predict x-ray photon beam properties from electron beam properties. We recorded XFEL electron parameters while adjusting the accelerator’s configurations and measured the resulting x-ray wavefront and energy spectrum shot-to-shot. Training the ANN with this data enables effective prediction of single-shot or average x-ray beam output based on XFEL undulator and electron parameters. This demonstrates the potential of utilizing ANNs for virtual diagnostics linking XFEL electron and photon beam properties.

     
    more » « less
  4. Jez, Joseph M. ; Topp, Christopher N. (Ed.)
    Structural biologists rely on X-ray crystallography as the main technique for determining the three-dimensional structures of macromolecules; however, in recent years, new methods that go beyond X-ray-based technologies are broadening the selection of tools to understand molecular structure and function. Simultaneously, national facilities are developing programming tools and maintaining personnel to aid novice structural biologists in de novo structure determination. The combination of X-ray free electron lasers (XFELs) and serial femtosecond crystallography (SFX) now enable time-resolved structure determination that allows for capture of dynamic processes, such as reaction mechanism and conformational flexibility. XFEL and SFX, along with microcrystal electron diffraction (MicroED), help side-step the need for large crystals for structural studies. Moreover, advances in cryogenic electron microscopy (cryo-EM) as a tool for structure determination is revolutionizing how difficult to crystallize macromolecules and/or complexes can be visualized at the atomic scale. This review aims to provide a broad overview of these new methods and to guide readers to more in-depth literature of these methods. 
    more » « less
  5. X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.

     
    more » « less