This paper extends the Madelung–Bohm formulation of quantum mechanics to describe the time-reversible interaction of classical and quantum systems. The symplectic geometry of the Madelung transform leads to identifying hybrid quantum–classical Lagrangian paths extending the Bohmian trajectories from standard quantum theory. As the classical symplectic form is no longer preserved, the nontrivial evolution of the Poincaré integral is presented explicitly. Nevertheless, the classical phase-space components of the hybrid Bohmian trajectory identify a Hamiltonian flow parameterized by the quantum coordinate and this flow is associated to the motion of the classical subsystem. In addition, the continuity equation of the joint quantum–classical density is presented explicitly. While the von Neumann density operator of the quantum subsystem is always positive-definite by construction, the hybrid density is generally allowed to be unsigned. However, the paper concludes by presenting an infinite family of hybrid Hamiltonians whose corresponding evolution preserves the sign of the probability density for the classical subsystem.
more » « less- PAR ID:
- 10303699
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Nonlinearity
- Volume:
- 33
- Issue:
- 10
- ISSN:
- 0951-7715
- Page Range / eLocation ID:
- p. 5383-5424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We derive a rigorous nuclear gradient for a molecule-cavity hybrid system using the quantum electrodynamics Hamiltonian. We treat the electronic–photonic degrees of freedom (DOFs) as the quantum subsystem and the nuclei as the classical subsystem. Using the adiabatic basis for the electronic DOF and the Fock basis for the photonic DOF and requiring the total energy conservation of this mixed quantum–classical (MQC) system, we derived the rigorous nuclear gradient for the molecule–cavity hybrid system, which is naturally connected to the approximate gradient under the Jaynes–Cummings approximation. The nuclear gradient expression can be readily used in any MQC simulations and will allow one to perform the non-adiabatic on-the-fly simulation of polariton quantum dynamics. The theoretical developments in this work could significantly benefit the polariton quantum dynamics community with a rigorous nuclear gradient of the molecule–cavity hybrid system and have a broad impact on the future non-adiabatic simulations of polariton quantum dynamics.more » « less
-
All correlation measures, classical and quantum, must be monotonic under local operations. In this paper, we characterize monotonic formulas that are linear combinations of the von Neumann entropies associated with the quantum state of a physical system that has n parts. We show that these formulas form a polyhedral convex cone, which we call the monotonicity cone, and enumerate its facets. We illustrate its structure and prove that it is equivalent to the cone of monotonic formulas implied by strong subadditivity. We explicitly compute its extremal rays for n ≤ 5. We also consider the symmetric monotonicity cone, in which the formulas are required to be invariant under subsystem permutations. We describe this cone fully for all n. We also show that these results hold when states and operations are constrained to be classical.more » « less
-
Abstract Interactions between electrons and phonons play a crucial role in quantum materials. Yet, there is no universal method that would simultaneously accurately account for strong electron-phonon interactions and electronic correlations. By combining methods of the variational quantum eigensolver and the variational non-Gaussian solver, we develop a hybrid quantum-classical algorithm suitable for this type of correlated systems. This hybrid method tackles systems with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates, as compared to purely electronic models. We benchmark our method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases, quantitatively consistent with exact diagonalization.
-
Abstract: This paper investigates reduction by symmetries in simple hybrid mechanical systems, in particular, symplectic and Poisson reduction for simple hybrid Hamiltonian and Lagrangian systems. We give general conditions for whether it is possible to perform a symplectic reduction for simple hybrid Lagrangian system under a Lie group of symmetries and we also provide sufficient conditions for performmore » « less
-
Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC’s power, but today’s Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuits that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative -- purely classical simulations -- and demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone.more » « less