skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Communication-efficient SGD: From Local SGD to One-Shot Averaging
Award ID(s):
1914792 1664644 1645681 1933027
PAR ID:
10303708
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. In this paper we focus on the problem of finding the optimal weights of the shallowest of neural networks consisting of a single Rectified Linear Unit (ReLU). These functions are of the form x → max(0,⟨w,x⟩) with w ∈ Rd denoting the weight vector. We focus on a planted model where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to a planted weight vector. We first show that mini-batch stochastic gradient descent when suitably initialized, converges at a geometric rate to the planted model with a number of samples that is optimal up to numerical constants. Next we focus on a parallel implementation where in each iteration the mini-batch gradient is calculated in a distributed manner across multiple processors and then broadcast to a master or all other processors. To reduce the communication cost in this setting we utilize a Quanitzed Stochastic Gradient Scheme (QSGD) where the partial gradients are quantized. Perhaps unexpectedly, we show that QSGD maintains the fast convergence of SGD to a globally optimal model while significantly reducing the communication cost. We further corroborate our numerical findings via various experiments including distributed implementations over Amazon EC2. 
    more » « less
  3. null (Ed.)
    In this paper, we study communication-efficient decentralized training of large-scale machine learning models over a network. We propose and analyze SQuARM-SGD, a decentralized training algorithm, employing momentum and compressed communication between nodes regulated by a locally computable triggering rule. In SQuARM-SGD, each node performs a fixed number of local SGD (stochastic gradient descent) steps using Nesterov's momentum and then sends sparisified and quantized updates to its neighbors only when there is a significant change in its model parameters since the last time communication occurred. We provide convergence guarantees of our algorithm for strongly-convex and non-convex smooth objectives. We believe that ours is the first theoretical analysis for compressed decentralized SGD with momentum updates. We show that SQuARM-SGD converges at rate O(1/nT) for strongly-convex objectives, while for non-convex objectives it converges at rate O(1/√nT), thus matching the convergence rate of \emphvanilla distributed SGD in both these settings. We corroborate our theoretical understanding with experiments and compare the performance of our algorithm with the state-of-the-art, showing that without sacrificing much on the accuracy, SQuARM-SGD converges at a similar rate while saving significantly in total communicated bits. 
    more » « less