skip to main content

Title: ProgRPGAN: Progressive GAN for Route Planning
Learning to route has received significant research momentum as a new approach for the route planning problem in intelligent transportation systems. By exploring global knowledge of geographical areas and topological structures of road networks to facilitate route planning, in this work, we propose a novel Generative Adversarial Network (GAN) framework, namely Progressive Route Planning GAN (ProgRPGAN), for route planning in road networks. The novelty of ProgRPGAN lies in the following aspects: 1) we propose to plan a route with levels of increasing map resolution, starting on a low-resolution grid map, gradually refining it on higher-resolution grid maps, and eventually on the road network in order to progressively generate various realistic paths; 2) we propose to transfer parameters of the previous-level generator and discriminator to the subsequent generator and discriminator for parameter initialization in order to improve the efficiency and stability in model learning; and 3) we propose to pre-train embeddings of grid cells in grid maps and intersections in the road network by capturing the network topology and external factors to facilitate effective model learning. Empirical result shows that ProgRPGAN soundly outperforms the state-of-the-art learning to route methods, especially for long routes, by 9.46% to 13.02% in F1-measure on multiple large-scale real-world datasets. ProgRPGAN, moreover, effectively generates various realistic routes for the same query.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2021)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increasing availability of GPS trajectory data, map construction algorithms have been developed that automatically construct road maps from this data. In order to assess the quality of such (constructed) road maps, the need for meaningful road map comparison algorithms becomes increasingly important. Indeed, different approaches for map comparison have been recently proposed; however, most of these approaches assume that the road maps are modeled as undirected embedded planar graphs. In this paper, we study map comparison algorithms for more realistic models of road maps: directed roads as well as weighted roads. In particular, we address two main questions: how close are the graphs to each other, and how close is the information presented by the graphs (i.e., traffic times, trajectories, and road type)? We propose new road network comparisons and give illustrative examples. Furthermore, our approaches do not only apply to road maps but can be used to compare other kinds of graphs as well. 
    more » « less
  2. Residents in cities typically use third-party platforms such as Google Maps for route planning services. While providing near real-time processing, these state of the art centralized deployments are limited to multiprocessing environments in data centers. This raises privacy concerns, increases risk for critical data and causes vulnerability to network failure. In this paper, we propose to use decentralized road side units (RSU) (owned by the city) to perform route planning. We divide the city road network into grids, each assigned an RSU where traffic data is kept locally, increasing security and resiliency such that the system can perform even if some RSUs fail. Route generation is done in two steps. First, an optimal grid sequence is generated, prioritizing shortest path calculation accuracy but not RSU load. Second, we assign route planning tasks to the grids in the sequence. Keeping in mind RSU load and constraints, tasks can be allocated and executed in any non-optimal grid but with lower accuracy. We evaluate this system using Metropolitan Nashville road traffic data. We divided the area into 613 grids, configuring load and neighborhood sizes to meet delay constraints while maximizing model accuracy. The results show that there is a 30% decrease in processing time with a decrease in model accuracy of 99% to 92.3%, by simply increasing the search area to the optimal grid's immediate neighborhood. 
    more » « less
  3. We propose an approach to generate realistic and high-fidelity stock market data based on generative adversarial networks (GANs). Our Stock-GAN model employs a conditional Wasserstein GAN to capture history dependence of orders. The generator design includes specially crafted aspects including components that approximate the market's auction mechanism, augmenting the order history with order-book constructions to improve the generation task. We perform an ablation study to verify the usefulness of aspects of our network structure. We provide a mathematical characterization of distribution learned by the generator. We also propose statistics to measure the quality of generated orders. We test our approach with synthetic and actual market data, compare to many baseline generative models, and find the generated data to be close to real data. 
    more » « less
  4. Abstract

    With increasing demands for precise water resource management, there is a growing need for advanced techniques in mapping water bodies. The currently deployed satellites provide complementary data that are either of high spatial or high temporal resolutions. As a result, there is a clear trade‐off between space and time when considering a single data source. For the efficient monitoring of multiple environmental resources, various Earth science applications need data at high spatial and temporal resolutions. To address this need, many data fusion methods have been described in the literature, that rely on combining data snapshots from multiple sources. Traditional methods face limitations due to sensitivity to atmospheric disturbances and other environmental factors, resulting in noise, outliers, and missing data. This paper introduces Hydrological Generative Adversarial Network (Hydro‐GAN), a novel machine learning‐based method that utilizes modified GANs to enhance boundary accuracy when mapping low‐resolution MODIS data to high‐resolution Landsat‐8 images. We propose a new non‐saturating loss function for the Hydro‐GAN generator, which maximizes the log of discriminator probabilities to promote stable updates and aid convergence. By focusing on reducing squared differences between real and synthetic images, our approach enhances training stability and overall performance. We specifically focus on mapping water bodies using MODIS and Landsat‐8 imagery due to their relevance in water resource management tasks. Our experimental results demonstrate the effectiveness of Hydro‐GAN in generating high‐resolution water body maps, outperforming traditional methods in terms of boundary accuracy and overall quality.

    more » « less
  5. Abstract

    Droughts are among the most devastating natural hazards, occurring in all regions with different climate conditions. The impacts of droughts result in significant damages annually around the world. While drought is generally described as a slow‐developing hazardous event, a rapidly developing type of drought, the so‐called flash drought has been revealed by recent studies. The rapid onset and strong intensity of flash droughts require accurate real‐time monitoring. Addressing this issue, a Generative Adversarial Network (GAN) is developed in this study to monitor flash droughts over the Contiguous United States (CONUS). GAN contains two models: (a) discriminator and (b) generator. The developed architecture in this study employs a Markovian discriminator, which emphasizes the spatial dependencies, with a modified U‐Net generator, tuned for optimal performance. To determine the best loss function for the generator, four different networks are developed with different loss functions, including Mean Absolute Error (MAE), adversarial loss, a combination of adversarial loss with Mean Square Error (MSE), and a combination of adversarial loss with MAE. Utilizing daily datasets collected from NLDAS‐2 and Standardized Soil Moisture Index (SSI) maps, the network is trained for real‐time daily SSI monitoring. Comparative assessments reveal the proposed GAN's superior ability to replicate SSI values over U‐Net and Naïve models. Evaluation metrics further underscore that the developed GAN successfully identifies both fine‐ and coarse‐scale spatial drought patterns and abrupt changes in the SSI temporal patterns that is important for flash drought identification.

    more » « less