skip to main content


Title: Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits
Policy learning using historical observational data is an important problem that has found widespread applications. However, existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment that has generated the data{–}an assumption that is often false or too coarse an approximation. In this paper, we lift this assumption and aim to learn a distributionally robust policy with bandit observational data. We propose a novel learning algorithm that is able to learn a robust policy to adversarial perturbations and unknown covariate shifts. We first present a policy evaluation procedure in an ambiguous environment and also give a heuristic algorithm to solve the distributionally robust policy learning problems efficiently. Additionally, we provide extensive simulations to demonstrate the robustness of our policy.  more » « less
Award ID(s):
1820942
NSF-PAR ID:
10303790
Author(s) / Creator(s):
; ; ;
Editor(s):
III, Hal Daumé; Singh, Aarti
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
119
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. III, Hal Daumé (Ed.)
    Policy learning using historical observational data is an important problem that has found widespread applications. However, existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment that has generated the data{–}an assumption that is often false or too coarse an approximation. In this paper, we lift this assumption and aim to learn a distributionally robust policy with bandit observational data. We propose a novel learning algorithm that is able to learn a robust policy to adversarial perturbations and unknown covariate shifts. We first present a policy evaluation procedure in the ambiguous environment and also give a heuristic algorithm to solve the distributionally robust policy learning problems efficiently. Additionally, we provide extensive simulations to demonstrate the robustness of our policy. 
    more » « less
  2. Banerjee, Arindam and (Ed.)
    While reinforcement learning has witnessed tremendous success recently in a wide range of domains, robustness–or the lack thereof–remains an important issue that remains inadequately addressed. In this paper, we provide a distributionally robust formulation of offline learning policy in tabular RL that aims to learn a policy from historical data (collected by some other behavior policy) that is robust to the future environment arising as a perturbation of the training environment. We first develop a novel policy evaluation scheme that accurately estimates the robust value (i.e. how robust it is in a perturbed environment) of any given policy and establish its finite-sample estimation error. Building on this, we then develop a novel and minimax-optimal distributionally robust learning algorithm that achieves $O_P\left(1/\sqrt{n}\right)$ regret, meaning that with high probability, the policy learned from using $n$ training data points will be $O\left(1/\sqrt{n}\right)$ close to the optimal distributionally robust policy. Finally, our simulation results demonstrate the superiority of our distributionally robust approach compared to non-robust RL algorithms. 
    more » « less
  3. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesvari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    Reinforcement learning (RL) has demonstrated remarkable achievements in simulated environments. However, carrying this success to real environments requires the important attribute of robustness, which the existing RL algorithms often lack as they assume that the future deployment environment is the same as the training environment (i.e. simulator) in which the policy is learned. This assumption often does not hold due to the discrepancy between the simulator and the real environment and, as a result, and hence renders the learned policy fragile when deployed. In this paper, we propose a novel distributionally robust Q-learning algorithm that learns the best policy in the worst distributional perturbation of the environment. Our algorithm first transforms the infinite-dimensional learning problem (since the environment MDP perturbation lies in an infinite-dimensional space) into a finite-dimensional dual problem and subsequently uses a multi-level Monte-Carlo scheme to approximate the dual value using samples from the simulator. Despite the complexity, we show that the resulting distributionally robust Q-learning algorithm asymptotically converges to optimal worst-case policy, thus making it robust to future environment changes. Simulation results further demonstrate its strong empirical robustness. 
    more » « less
  4. We consider the imitation learning problem of learning a policy in a Markov Decision Process (MDP) setting where the reward function is not given, but demonstrations from experts are available. Although the goal of imitation learning is to learn a policy that produces behaviors nearly as good as the experts’ for a desired task, assumptions of consistent optimality for demonstrated behaviors are often violated in practice. Finding a policy that is distributionally robust against noisy demonstrations based on an adversarial construction potentially solves this problem by avoiding optimistic generalizations of the demonstrated data. This paper studies Distributionally Robust Imitation Learning (DRoIL) and establishes a close connection between DRoIL and Maximum Entropy Inverse Reinforcement Learning. We show that DRoIL can be seen as a framework that maximizes a generalized concept of entropy. We develop a novel approach to transform the objective function into a convex optimization problem over a polynomial number of variables for a class of loss functions that are additive over state and action spaces. Our approach lets us optimize both stationary and non-stationary policies and, unlike prevalent previous methods, it does not require repeatedly solving an inner reinforcement learning problem. We experimentally show the significant benefits of DRoIL’s new optimization method on synthetic data and a highway driving environment. 
    more » « less
  5. Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions, which is crucial in applications where online experimentation is limited. However, depending entirely on logged data, OPE/L is sensitive to environment distribution shifts — discrepancies between the data-generating environment and that where policies are deployed. Si et al., (2020) proposed distributionally robust OPE/L (DROPE/L) to address this, but the proposal relies on inverse-propensity weighting, whose estimation error and regret will deteriorate if propensities are nonparametrically estimated and whose variance is suboptimal even if not. For standard, non-robust, OPE/L, this is solved by doubly robust (DR) methods, but they do not naturally extend to the more complex DROPE/L, which involves a worst-case expectation. In this paper, we propose the first DR algorithms for DROPE/L with KL-divergence uncertainty sets. For evaluation, we propose Localized Doubly Robust DROPE (LDR2 OPE) and show that it achieves semiparametric efficiency under weak product rates conditions. Thanks to a localization technique, LDR2 OPE only requires fitting a small number of regressions, just like DR methods for standard OPE. For learning, we propose Continuum Doubly Robust DROPL (CDR2 OPL) and show that, under a product rate condition involving a continuum of regressions, it enjoys a fast regret rate of 𝑂(𝑁−1/2) even when unknown propensities are nonparametrically estimated. We empirically validate our algorithms in simulations and further extend our results to general 𝑓 -divergence uncertainty sets. 
    more » « less