skip to main content

This content will become publicly available on October 20, 2022

Title: Data-driven abductive inference of library specifications
Programmers often leverage data structure libraries that provide useful and reusable abstractions. Modular verification of programs that make use of these libraries naturally rely on specifications that capture important properties about how the library expects these data structures to be accessed and manipulated. However, these specifications are often missing or incomplete, making it hard for clients to be confident they are using the library safely. When library source code is also unavailable, as is often the case, the challenge to infer meaningful specifications is further exacerbated. In this paper, we present a novel data-driven abductive inference mechanism that infers specifications for library methods sufficient to enable verification of the library's clients. Our technique combines a data-driven learning-based framework to postulate candidate specifications, along with SMT-provided counterexamples to refine these candidates, taking special care to prevent generating specifications that overfit to sampled tests. The resulting specifications form a minimal set of requirements on the behavior of library implementations that ensures safety of a particular client program. Our solution thus provides a new multi-abduction procedure for precise specification inference of data structure libraries guided by client-side verification tasks. Experimental results on a wide range of realistic OCaml data structure programs demonstrate the more » effectiveness of the approach. « less
Authors:
 ;  ;  ;  
Award ID(s):
1755880
Publication Date:
NSF-PAR ID:
10303950
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
5
Issue:
OOPSLA
ISSN:
2475-1421
Sponsoring Org:
National Science Foundation
More Like this
  1. Memcached is a widely used key-value store. It is structured as a multithreaded user-level server, accessed over socket connections by a potentially distributed collection of clients. Because socket communication is so much more expensive than a single operation on a K-V store, much of the client library is devoted to batching of requests. Batching is not always feasible, however, and the cost of communication seems particularly unfortunate when—as is often the case—clients are co-located on a single machine with the server, and have access to the same physical memory. Fortunately, recent work on _protected libraries_ has shown that it ismore »possible, on current Intel processors, to amplify access rights quickly when calling into a specially configured user-level library. Library instances in separate processes can then share data safely, even in the face of independent process failures. We have used protected libraries to implement a new version of memcached in which client threads execute the code of the server themselves, without the need to send messages. Compared to the original, our new version is both significantly simpler, containing 24% less code, and dramatically faster, with a 11–56× reduction in latency and a roughly 2× increase in throughput.« less
  2. In modern software development, software libraries play a crucial role in reducing software development effort and improving software quality. However, at the same time, the asynchronous upgrades of software libraries and client software projects often result in incompatibilities between different versions of libraries and client projects. When libraries evolve, it is often very challenging for library developers to maintain the so-called backward compatibility and keep all their external behavior untouched, and behavioral backward incompatibilities (BBIs) may occur. In practice, the regression test suites of library projects often fail to detect all BBIs. Therefore, in this paper, we propose DeBBI tomore »detect BBIs via cross-project testing and analysis, i.e., using the test suites of various client projects to detect library BBIs. Since executing all the possible client projects can be extremely time consuming, DeBBI transforms the problem of cross-project BBI detection into a traditional information retrieval (IR) problem to execute the client projects with higher probability to detect BBIs earlier. Furthermore, DeBBI considers project diversity and test relevance information for even faster BBI detection. The experimental results show that DeBBI can reduce the end-to-end testing time for detecting the first and average unique BBIs by 99.1% and 70.8% for JDK compared to naive cross-project BBI detection. Also, DeBBI has been applied to other popular 3rd-party libraries. To date, DeBBI has detected 97 BBI bugs with 19 already confirmed as previously unknown bugs.« less
  3. The type-theoretic notions of existential abstraction, subtyping, subsumption, and intersection have useful analogues in separation-logic proofs of imperative programs. We have implemented these as an enhancement of the verified software toolchain (VST). VST is an impredicative concurrent separation logic for the C language, implemented in the Coq proof assistant, and proved sound in Coq. For machine-checked functional-correctness verification of software at scale, VST embeds its expressive program logic in dependently typed higher-order logic (CiC). Specifications and proofs in the program logic can leverage the expressiveness of CiC—so users can overcome the abstraction gaps that stand in the way of top-to-bottommore »verification: gaps between source code verification, compilation, and domain-specific reasoning, and between different analysis techniques or formalisms. Until now, VST has supported the specification of a program as a flat collection of function specifications (in higher-order separation logic)—one proves that each function correctly implements its specification, assuming the specifications of the functions it calls. But what if a function has more than one specification? In this work, we exploit type-theoretic concepts to structure specification interfaces for C code. This brings modularity principles of modern software engineering to concrete program verification. Previous work used representation predicates to enable data abstraction in separation logic. We go further, introducing function-specification subsumption and intersection specifications to organize the multiple specifications that a function is typically associated with. As in type theory, if 𝜙 is a of 𝜓, that is 𝜙<:𝜓, then 𝑥:𝜙 implies 𝑥:𝜓, meaning that any function satisfying specification 𝜙 can be used wherever a function satisfying 𝜓 is demanded. Subsumption incorporates separation-logic framing and parameter adaptation, as well as step-indexing and specifications constructed via mixed-variance functors (needed for C’s function pointers).« less
  4. Verification is often regarded as a one-time procedure undertaken after a protocol is specified but before it is implemented. However, in practice, protocols continually evolve with the addition of new capabilities and performance optimizations. Existing verification tools are ill-suited to “tracking” protocol evolution and programmers are too busy (or too lazy?) to simultaneously co-evolve specifications manually. This means that the correctness guarantees determined at verification time can erode as protocols evolve. Existing software quality techniques such as regression testing and root cause analysis, which naturally support system evolution, are poorly suited to reasoning about fault tolerance properties of a distributedmore »system because these properties require a search of the execution schedule rather than merely replaying inputs. This paper advocates that our community should explore the intersection of testing and verification to better ensure quality for distributed software and presents our experience evolving a data replication protocol at Elastic using a novel bug-finding technology called Lineage Driven Fault Injection (LDFI) as evidence.« less
  5. Homomorphic Encryption (HE) based secure Neural Networks(NNs) inference is one of the most promising security solutions to emerging Machine Learning as a Service (MLaaS). In the HE-based MLaaS setting, a client encrypts the sensitive data, and uploads the encrypted data to the server that directly processes the encrypted data without decryption, and returns the encrypted result to the client. The clients' data privacy is preserved since only the client has the private key. Existing HE-enabled Neural Networks (HENNs), however, suffer from heavy computational overheads. The state-of-the-art HENNs adopt ciphertext packing techniques to reduce homomorphic multiplications by packing multiple messages intomore »one single ciphertext. Nevertheless, rotations are required in these HENNs to implement the sum of the elements within the same ciphertext. We observed that HENNs have to pay significant computing overhead on rotations, and each of rotations is ∼10× more expensive than homomorphic multiplications between ciphertext and plaintext. So the massive rotations have become a primary obstacle of efficient HENNs. In this paper, we propose a fast, frequency-domain deep neural network called Falcon, for fast inferences on encrypted data. Falcon includes a fast Homomorphic Discrete Fourier Transform (HDFT) using block-circulant matrices to homomorphically support spectral operations. We also propose several efficient methods to reduce inference latency, including Homomorphic Spectral Convolution and Homomorphic Spectral Fully Connected operations by combing the batched HE and block-circulant matrices. Our experimental results show Falcon achieves the state-of-the-art inference accuracy and reduces the inference latency by 45.45%∼85.34% over prior HENNs on MNIST and CIFAR-10.« less