skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling Extremely Fine-grained Parallelism via Scalable Concurrent Queues on Modern Many-core Architectures
Enabling efficient fine-grained task parallelism is a significant challenge for hardware platforms with increasingly many cores. Existing techniques do not scale to hundreds of threads due to the high cost of synchronization in concurrent data structures. To overcome these limitations we present XQueue, a novel lock-less concurrent queuing system with relaxed ordering semantics that is geared towards realizing scalability up to hundreds of concurrent threads. We demonstrate the scalability of XQueue using microbenchmarks and show that XQueue can deliver concurrent operations with latencies as low as 110 cycles at scales of up to 192 cores (up to 6900× improvement compared to traditional synchronization mechanisms) across our diverse hardware, including x86, ARM, and Power9. The reduced latency allows XQueue to provide orders of magnitude (3300×) better throughput that existing techniques. To evaluate the real-world benefits of XQueue, we integrated XQueue with LLVM OpenMP and evaluated five unmodified benchmarks from the Barcelona OpenMP Task Suite (BOTS) as well as a graph traversal benchmark from the GAP benchmark suite. We compared the XQueue-enabled LLVM OpenMP implementation with the native LLVM and GNU OpenMP versions. Using fine-grained task workloads, XQueue can deliver 4× to 6× speedup compared to native GNU OpenMP and LLVM OpenMP in many cases, with speedups as high as 116× in some cases.  more » « less
Award ID(s):
1718252 2028958 1763612 1730689 1757964 2107283
PAR ID:
10304007
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 29th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS '21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Task graphs have been studied for decades as a foundation for scheduling irregular parallel applications and incorporated in many programming models including OpenMP. While many high-performance parallel libraries are based on task graphs, they also have additional scheduling requirements, such as synchronization within inner levels of data parallelism and internal blocking communications. In this paper, we extend task-graph scheduling to support efficient synchronization and communication within tasks. Compared to past work, our scheduler avoids deadlock and oversubscription of worker threads, and refines victim selection to increase the overlap of sibling tasks. To the best of our knowledge, our approach is the first to combine gang-scheduling and work-stealing in a single runtime. Our approach has been evaluated on the SLATE high-performance linear algebra library. Relative to the LLVM OMP runtime, our runtime demonstrates performance improvements of up to 13.82%, 15.2%, and 36.94% for LU, QR, and Cholesky, respectively, evaluated across different configurations related to matrix size, number of nodes, and use of CPUs vs GPUs. 
    more » « less
  2. Task graphs have been studied for decades as a foundation for scheduling irregular parallel applications and incorporated in many programming models including OpenMP. While many high-performance parallel libraries are based on task graphs, they also have additional scheduling requirements, such as synchronization within inner levels of data parallelism and internal blocking communications. In this paper, we extend task-graph scheduling to support efficient synchronization and communication within tasks. Compared to past work, our scheduler avoids deadlock and oversubscription of worker threads, and refines victim selection to increase the overlap of sibling tasks. To the best of our knowledge, our approach is the first to combine gang-scheduling and work-stealing in a single runtime. Our approach has been evaluated on the SLATE high-performance linear algebra library. Relative to the LLVM OMP runtime, our runtime demonstrates performance improvements of up to 13.82%, 15.2%, and 36.94% for LU, QR, and Cholesky, respectively, evaluated across different configurations related to matrix size, number of nodes, and use of CPUs vs GPUs 
    more » « less
  3. Transactional memory is a concurrency control mechanism that dynamically determines when threads may safely execute critical sections of code. It provides the performance of fine-grained locking mechanisms with the simplicity of coarse-grained locking mechanisms. With hardware based transactions, the protection of shared data accesses and updates can be evaluated at runtime so that only true collisions to shared data force serialization. This paper explores the use of transactional memory as an alternative to conventional synchronization mechanisms for managing the pending event set in a Time Warp synchronized parallel simulator. In particular, we explore the application of Intel’s hardware-based transactional memory (TSX) to manage shared access to the pending event set by the simulation threads. Comparison between conventional locking mechanisms and transactional memory access is performed to evaluate each within the warped Time Warp synchronized parallel simulation kernel. In this testing, evaluation of both forms of transactional memory found in the Intel Haswell processor, Hardware Lock Elision (HLE) and Restricted Transactional Memory (RTM), are evaluated. The results show that RTM generally outperforms conventional locking mechanisms and that HLE provides consistently better performance than conventional locking mechanisms, in some cases as much as 27%. 
    more » « less
  4. Technologies such as Multi-Channel DRAM (MCDRAM) or High Bandwidth Memory (HBM) provide significantly more bandwidth than conventional memory. This trend has raised questions about how applications should manage data transfers between levels.This paper focuses on evaluating different usage modes of the MCDRAM in Intel Knights Landing (KNL) manycore processors. We evaluate these usage modes with a sorting kernel and a sortingbased streaming benchmark. We develop a performance model for the benchmark and use experimental evidence to demonstrate the correctness of the model. The model projects near-optimal numbers of copy threads for memory bandwidth bound computations. We demonstrate on KNL up to a 1.9X speedup for sort when the problem does not fit in MCDRAM over an OpenMP GNU sort that does not use MCDRAM. 
    more » « less
  5. null (Ed.)
    On shared-memory multicore machines, classic two-way recursive divide-and-conquer algorithms are implemented using common fork-join based parallel programming paradigms such as Intel Cilk+ or OpenMP. However, in such parallel paradigms, the use of joins for synchronization may lead to artificial dependencies among function calls which are not implied by the underlying DP recurrence. These artificial dependencies can increase the span asymptotically and thus reduce parallelism. From a practical perspective, they can lead to resource underutilization, i.e., threads becoming idle. To eliminate such artificial dependencies, task-based runtime systems and data-flow parallel paradigms, such as Concurrent Collections (CnC), PaRSEC, and Legion have been introduced. Such parallel paradigms and runtime systems overcome the limitations of fork-join parallelism by specifying data dependencies at a finer granularity and allowing tasks to execute as soon as dependencies are satisfied.In this paper, we investigate how the performance of data-flow implementations of recursive divide-and-conquer based DP algorithms compare with fork-join implementations. We have designed and implemented data-flow versions of DP algorithms in Intel CnC and compared the performance with fork-join based implementations in OpenMP. Considering different execution parameters (e.g., algorithmic properties such as recursive base size as well as machine configuration such as the number of physical cores, etc), our results confirm that a data-flow based implementation outperforms its fork-join based counter-part when due to artificial dependencies, the fork-join implementation fails to generate enough subtasks to keep all processors busy and does not have enough data locality to compensate for the lost performance. This phenomena happens when the input size of the DP algorithm is small or we have a huge number of compute cores in the system. As a result, with a fixed computation resource, moving from small input to larger input, fork-join implementation of DP algorithms outperforms the corresponding data-flow implementation. However, for a fixed size problem, moving the computation to a compute node with a larger number of cores, data-flow implementation outperforms the corresponding fork-join implementation. 
    more » « less