skip to main content


Title: Impacts of the North Atlantic Subtropical High on Daily Summer Precipitation over the Conterminous United States
Abstract By modulating the moisture flux from ocean to adjacent land, the North Atlantic Subtropical High (NASH) western ridge significantly influences summer-season total precipitation over the Conterminous United States (CONUS). However, its influence on the frequency and intensity of daily rainfall events over the CONUS remains unclear. Here we introduce a Bayesian statistical model to investigate the impacts of the NASH western ridge position on key statistics of daily-scale summer precipitation, including the intensity of rainfall events, the probability of precipitation occurrence, and the probability of extreme values. These statistical quantities play a key role in characterizing both the impact of wet extremes (e.g., the probability of floods) and dry extremes. By applying this model to historical rain gauge records (1948-2019) covering the entire CONUS, we find that the western ridge of the NASH influences the frequency of rainfall as well as the distribution of rainfall intensities over extended areas of the CONUS. In particular, we find that the NASH ridge also modulates the frequency of extreme rainfall, especially that over part of the Southeast and upper Midwest. Our analysis underlines the importance of including the NASH western ridge position as a predictor for key statistical rainfall properties to be used for hydrological applications. This result is especially relevant for projecting future changes in daily rainfall regimes over the CONUS based on the predicted strengthening of the NASH in a warming climate.  more » « less
Award ID(s):
1663138
NSF-PAR ID:
10304172
Author(s) / Creator(s):
 ;  
Date Published:
Journal Name:
Journal of Hydrometeorology
ISSN:
1525-755X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The estimation of the frequency of intense rainfall events is a crucial step for quantifying their impact on human societies and on the environment. This process is hindered by large gaps in ground observational networks at the global scale, such that extensive areas remain ungauged. The increasing availability of satellite‐based rainfall estimates, while providing data with unprecedented resolution and global coverage, also introduces new challenges: the scale disparity between gridded and rain‐gauge precipitation products on the one hand, and the short length of the available satellite records on the other. Here we propose a statistical framework for the estimation of rainfall extremes that is specifically designed to simultaneously address these two key issues, providing a new way of estimating extreme rainfall magnitudes from space. A downscaling procedure is here introduced to recover the spatial correlation and the probability density function of daily rainfall at the point (gauge) scale from coarse‐scale satellite estimates. The results are then combined with a recent statistical model of extremes (the Metastatistical Extreme Value distribution), which optimizes the use of the information obtained from relatively short satellite observational time series. The methodology is tested using data from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis over the Little Washita River, Oklahoma. We find that our approach satisfactorily reproduces downscaled daily rainfall probability density functions and can significantly improve the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis‐based estimation of quantiles with return times larger than the length of the available data set (19 years here), which are especially important for several water‐related applications.

     
    more » « less
  2. null (Ed.)
    Abstract. Extreme weather and climate events such as floods, droughts, and heat waves can cause extensive societal damages. While various statistical and climate models have been developed for the purpose of simulating extremes, a consistent definition of extreme events is still lacking. Furthermore, to better assess the performance of the climate models, a variety of spatial forecast verification measures have been developed. However, in most cases, the spatial verification measures that are widely used to compare mean states do not have sufficient theoretical justification to benchmark extreme events. In order to alleviate inconsistencies when defining extreme events within different scientific communities, we propose a new generalized Spatio-Temporal Threshold Clustering method for the identification of extreme event episodes, which uses machine learning techniques to couple existing pattern recognition indices with high or low threshold choices. The method consists of five main steps: (1) construction of essential field quantities; (2) dimension reduction; (3) spatial domain mapping; (4) time series clustering; and (5) threshold selection. We develop and apply this method using a gridded daily precipitation dataset derived from rain gauge stations over the contiguous United States. We observe changes in the distribution of conditional frequency of extreme precipitation from large-scale well-connected spatial patterns to smaller-scale more isolated rainfall clusters, possibly leading to more localized droughts and heat waves, especially during the summer months. The proposed method automates the threshold selection process through a clustering algorithm and can be directly applicable in conjunction with modeling and spatial forecast verification of extremes. Additionally, it allows for the identification of synoptic-scale spatial patterns that can be directly traced to the individual extreme episodes, and it offers users the flexibility to select an extreme threshold that is linked to the desired geometrical properties. The approach can be applied to broad scientific disciplines. 
    more » « less
  3. Abstract

    Extreme precipitation events, including those associated with weather fronts, have wide‐ranging impacts across the world. Here we use a deep learning algorithm to identify weather fronts in high resolution Community Earth System Model (CESM) simulations over the contiguous United States (CONUS), and evaluate the results using observational and reanalysis products. We further compare results between CESM simulations using present‐day and future climate forcing, to study how these features might change with climate change. We find that detected front frequencies in CESM have seasonally varying spatial patterns and responses to climate change and are found to be associated with modeled changes in large scale circulation such as the jet stream. We also associate the detected fronts with precipitation and find that total and extreme frontal precipitation mostly decreases with climate change, with some seasonal and regional differences. Decreases in Northern Hemisphere summer frontal precipitation are largely driven by changes in the frequency of different front types, especially cold and stationary fronts. On the other hand, Northern Hemisphere winter exhibits some regional increases in frontal precipitation that are largely driven by changes in frontal precipitation intensity. While CONUS mean and extreme precipitation generally increase during all seasons in these climate change simulations, the likelihood of frontal extreme precipitation decreases, demonstrating that extreme precipitation has seasonally varying sources and mechanisms that will continue to evolve with climate change.

     
    more » « less
  4. Abstract

    Tropical cyclones (TCs) generate extreme precipitation with severe impacts across large coastal and inland areas, calling for accurate frequency estimation methods. Statistical approaches that take into account the physical mechanisms responsible for these extremes can help reduce the estimation uncertainty. Here we formulate a mixed‐population Metastatistical Extreme Value Distribution explicitly incorporating non‐TC and TC‐induced rainfall and evaluate its implications on long series of daily rainfall for six major U.S. urban areas impacted by these storms. We find statistically significant differences between the distributions of TC‐ and non‐TC‐related precipitation; moreover, including mixtures of distributions improves the estimation of the probability of extreme precipitation where TCs occur more frequently. These improvements are greater when rainfall aggregated over durations longer than one day are considered.

     
    more » « less
  5. null (Ed.)
    This study investigates the synoptic scale flows associated with extreme rainfall systems over the Asian-Australian monsoon region (90-160°E and 12°S-27°N). Based on statistics of the 17-year Precipitation Radar observations from Tropical Rainfall Measurement Mission, a total of 916 extreme systems with both the horizontal size and maximum rainfall intensity exceeding the 99.9th percentiles of the tropical rainfall systems are identified over this region. The synoptic wind pattern and rainfall distribution surrounding each system are classified into four major types: Vortex, Coastal, Coastal with Vortex, and None of above, with each accounting for 44 %, 29 %, 7 %, and 20 %, respectively. The vortex type occurs mainly over the off-equatorial areas in boreal summer. The coast-related types show significant seasonal variations in their occurrence, with high frequency in the Bay of Bengal in boreal summer and on the west side of Borneo and Sumatra in boreal winter. The None-of-the-above type occurs mostly over the open ocean, and in boreal winter these events are mainly associated with the cold surge events. The environment analysis shows that coast-related extremes in the warm season are found within the areas where high total water vapor and low-level vertical wind shear occur frequently. Despite the different synoptic environments, these extremes show a similar internal structure, with broad stratiform and wide convective core rain. Furthermore, the maximum rain rate locates mostly over convective area, near convective-stratiform boundary in the system. Our results highlight the critical role of the strength and direction of synoptic flows in the generation of extreme rainfall systems near coastal areas. With the enhancement of the low-level vertical wind shear and moisture by the synoptic flow, the coastal convection triggered diurnally has a higher chance to organize into mesoscale convective systems and hence a higher probability to produce extreme rainfall. 
    more » « less