skip to main content

Title: Early-life social experience affects offspring DNA methylation and later life stress phenotype
Abstract Studies in rodents and captive primates suggest that the early-life social environment affects future phenotype, potentially through alterations to DNA methylation. Little is known of these associations in wild animals. In a wild population of spotted hyenas, we test the hypothesis that maternal care during the first year of life and social connectedness during two periods of early development leads to differences in DNA methylation and fecal glucocorticoid metabolites (fGCMs) later in life. Here we report that although maternal care and social connectedness during the den-dependent life stage are not associated with fGCMs, greater social connectedness during the subadult den-independent life stage is associated with lower adult fGCMs. Additionally, more maternal care and social connectedness after den independence correspond with higher global (%CCGG) DNA methylation. We also note differential DNA methylation near 5 genes involved in inflammation, immune response, and aging that may link maternal care with stress phenotype.
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Communications
Sponsoring Org:
National Science Foundation
More Like this
  1. The contribution of nature versus nurture to the development of human behavior has been debated for centuries. Here, we offer a piece to this complex puzzle by identifying the human endogenous oxytocin system—known for its critical role in mammalian sociality—as a system sensitive to its early environment and subject to epigenetic change. Recent animal work suggests that early parental care is associated with changes in DNA methylation of conserved regulatory sites within the oxytocin receptor gene ( OXTR m). Through dyadic modeling of behavior and OXTR m status across the first year and a half of life, we translated these findings to 101 human mother-infant dyads. We show that OXTR m is dynamic in infancy and its change is predicted by maternal engagement and reflective of behavioral temperament. We provide evidence for an early window of environmental epigenetic regulation of the oxytocin system, facilitating the emergence of individual differences in human behavior.
  2. How social development in early-life affects fitness remains poorly understood. 2. Though there is growing evidence that early-life relationships can affect fitness, little research has investigated how social positions develop or whether there are particularly important periods for social position development in an animal's life history. In long-lived species in particular, understanding the lasting consequences of early-life social environments requires detailed, long-term datasets. 3. Here we used a 25-year dataset to test whether social positions held during early development predicted adult fitness. Specifically, we quantified social position using three social network metrics: degree, strength and betweenness. We determined the social position of each individual in three types of networks during each of three stages of ontogeny to test whether they predict annual reproductive success (ARS) or longevity among adult female spotted hyenas Crocuta crocuta. 4. The social positions occupied by juvenile hyenas did predict their fitness, but the effects of social position on fitness measures differed between stages of early development. Network metrics when individuals were young adults better predicted ARS, but network metrics for younger animals, particularly when youngsters were confined to the communal den, better predicted longevity than did metrics assessed during other stages of development. 5. Ourmore »study shows how multiple types of social bonds formed during multiple stages of social development predict lifetime fitness outcomes. We suggest that social bonds formed during specific phases of development may be more important than others when considering fitness outcomes.« less
  3. Experiences early in life can have lasting effects on the health and survival of humans and other creatures. Whether early hardships can also influence the wellbeing of the next generation is less clear. One previous study with captive hamsters suggested that adversity early in the life of a mother may indeed shorten how long her offspring will live. But hamsters only live for a few years and much less is known about the possibility for intergenerational effects in animals with longer lifespans. This is partly because such studies are time-consuming and thus more difficult to complete. Over the past 45 years, scientists have collected data on generations of baboons living in and around the Amboseli National Park in southern Kenya. Baboons live in social groups with a strict hierarchy, and individuals can live for up to 30 years in the wild. Previous research has shown that early life adversity – such as being orphaned or simply having a low-ranking mother – can shorten the lifespan of female baboons even if they make it to adulthood. It was unclear, however, whether these ill effects could be passed on to the next generation. Now, Zipple et al. have used the wealth ofmore »data about the Amboseli baboons to find the answer. After taking into account any adversity that each baboon experienced directly, Zipple et al. showed that juvenile baboons whose mothers were orphaned before reaching adulthood were 44% more likely to die young than juveniles whose grandmothers survived during their mother’s early years. Baboons whose mothers had a close-in-age younger sibling were also 42% more likely to die early as compared to those whose mothers did not, perhaps because the younger sibling competed with the mother for access to maternal care. The analysis suggests that early life adversity in female baboons can have intergenerational effects. More studies are needed to determine if this is also true of humans. If it is, such a result may help explain the persistence of poor health outcomes across generations and shed light on how best to intervene to interrupt this transmission.« less
  4. Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch . We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced,more »suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.« less
  5. null (Ed.)
    The mechanisms that contribute to variation in lifetime reproductive success are not well understood. One possibility is that telomeres, conserved DNA sequences at chromosome ends that often shorten with age and stress exposures, may reflect differences in vital processes or influence fitness. Telomere length often predicts longevity, but longevity is only one component of fitness and little is known about how lifetime reproductive success is related to telomere dynamics in wild populations. We examined the relationships between telomere length beginning in early life, telomere loss into adulthood and lifetime reproductive success in free-living house sparrows ( Passer domesticus ). We found that females, but not males, with longer telomeres during early life had higher lifetime reproductive success, owing to associations with longevity and not reproduction per year or attempt. Telomeres decreased with age in both sexes, but telomere loss was not associated with lifetime reproductive success. In this species, telomeres may reflect differences in quality or condition rather than the pace of life, but only in females. Sexually discordant selection on telomeres is expected to influence the stability and maintenance of within population variation in telomere dynamics and suggests that any role telomeres play in mediating life-history trade-offs may bemore »sex specific.« less