Different actin nucleation-promoting factors (NPFs) orchestrate different patterns of cell protrusions, likely reflecting their distinct patterns of self-organization. Here, we leveraged in vivo biochemical approaches to investigate how the WAVE complex instructs the formation of sheet-like lamellipodia. We show that the WAVE complex is a core constituent of a linear multilayered protein array at the plasma membrane, expected for an NPF that builds sheet-like actin-based protrusions. Negative membrane curvature is both necessary and sufficient for WAVE complex linear membrane association in the presence of upstream activators (Rac, Arf1/6, and PIP3) and the PRDs of both WAVE2 and Abi2, providing a potential mechanistic basis for templating of lamellipodia and their emergent behaviors, including barrier avoidance. Through computational modeling, we demonstrate that WAVE complex’s linear organization and preference for negative curvature both play important roles in robust lamellipodia formation. Our data reveal key features of mesoscale WAVE complex patterning and highlight an integral relation between NPF self-organization and cell morphogenesis.
more »
« less
Spatiotemporal development of coexisting wave domains of Rho activity in the cell cortex
Abstract The Rho family GTPases are molecular switches that regulate cytoskeletal dynamics and cell movement through a complex spatiotemporal organization of their activity. In Patiria miniata (starfish) oocytes under in vitro experimental conditions (with overexpressed Ect2, induced expression of Δ90 cyclin B, and roscovitine treatment), such activity generates multiple co-existing regions of coherent propagation of actin waves. Here we use computational modeling to investigate the development and properties of such wave domains. The model reveals that the formation of wave domains requires a balance between the activation and inhibition in the Rho signaling motif. Intriguingly, the development of the wave domains is preceded by a stage of low-activity quasi-static patterns, which may not be readily observed in experiments. Spatiotemporal patterns of this stage and the different paths of their destabilization define the behavior of the system in the later high-activity (observable) stage. Accounting for a strong intrinsic noise allowed us to achieve good quantitative agreement between simulated dynamics in different parameter regimes of the model and different wave dynamics in Patiria miniata and wild type Xenopus laevis (frog) data. For quantitative comparison of simulated and experimental results, we developed an automated method of wave domain detection, which revealed a sharp reversal in the process of pattern formation in starfish oocytes. Overall, our findings provide an insight into spatiotemporal regulation of complex and diverse but still computationally reproducible cell-level actin dynamics.
more »
« less
- Award ID(s):
- 1942561
- PAR ID:
- 10304363
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Braiding of topological structures in complex matter fields provides a robust framework for encoding and processing information, and it has been extensively studied in the context of topological quantum computation. In living systems, topological defects are crucial for the localization and organization of biochemical signaling waves, but their braiding dynamics remain unexplored. Here, we show that the spiral wave cores, which organize the Rho-GTP protein signaling dynamics and force generation on the membrane of starfish egg cells, undergo spontaneous braiding dynamics. Experimentally measured world line braiding exponents and topological entropy correlate with cellular activity and agree with predictions from a generic field theory. Our analysis further reveals the creation and annihilation of virtual quasi-particle excitations during defect scattering events, suggesting phenomenological parallels between quantum and living matter.more » « less
-
Abstract Understanding how changes in developmental gene expression alter morphogenesis is a fundamental problem in development and evolution. A promising approach to address this problem is to compare the developmental transcriptomes between related species. The echinoderm phylum consists of several model species that have significantly contributed to the understanding of gene regulation and evolution. Particularly, the regulatory networks of the sea star,Patiria miniata(P.miniata), have been extensively studied, however developmental transcriptomes for this species were lacking. Here we generated developmental transcriptomes ofP.miniataand compared these with those of two sea urchins species. We demonstrate that the conservation of gene expression depends on gene function, cell type and evolutionary distance. With increasing evolutionary distance the interspecies correlations in gene expression decreases. The reduction is more severe in the correlations between morphologically equivalent stages (diagonal elements) than in the correlation between morphologically distinct stages (off-diagonal elements). This could reflect a decrease in the morphological constraints compared to other constraints that shape gene expression at large evolutionary divergence. Within this trend, the interspecies correlations of developmental control genes maintain their diagonality at large evolutionary distance, and peak at the onset of gastrulation, supporting the hourglass model of phylotypic stage conservation.more » « less
-
ABSTRACT Echinoderms represent a broad phylum with many tractable features to test evolutionary changes and constraints. Here, we present a single-cell RNA-sequencing analysis of early development in the sea star Patiria miniata, to complement the recent analysis of two sea urchin species. We identified 20 cell states across six developmental stages from 8 hpf to mid-gastrula stage, using the analysis of 25,703 cells. The clusters were assigned cell states based on known marker gene expression and by in situ RNA hybridization. We found that early (morula, 8-14 hpf) and late (blastula-to-mid-gastrula) cell states are transcriptionally distinct. Cells surrounding the blastopore undergo rapid cell state changes that include endomesoderm diversification. Of particular import to understanding germ cell specification is that we never see Nodal pathway members within Nanos/Vasa-positive cells in the region known to give rise to the primordial germ cells (PGCs). The results from this work contrast the results of PGC specification in the sea urchin, and the dataset presented here enables deeper comparative studies in tractable developmental models for testing a variety of developmental mechanisms.more » « less
-
Mical family enzymes are unusual actin regulators that prime filaments (F-actin) for disassembly via the site-specific oxidation of M44/M47. Filamentous actin acts as a substrate of Mical enzymes, as well as an activator of their NADPH oxidase activity, which leads to hydrogen peroxide generation. Mical enzymes are required for cytokinesis, muscle and heart development, dendritic pruning, and axonal guidance, among other processes. Thus, it is critical to understand how this family of actin regulators functions in different cell types. Vertebrates express six actin isoforms in a cell-specific manner, but MICALs’ impact on their intrinsic properties has never been systematically investigated. Our data reveal the differences in the intrinsic dynamics of Mical-oxidized actin isoforms. Furthermore, our results connect the intrinsic dynamics of actin isoforms and their redox state with the patterns of hydrogen peroxide (H2O2) generation by MICALs. We documented that the differential properties of actin isoforms translate into the distinct patterns of hydrogen peroxide generation in Mical/NADPH-containing systems. Moreover, our results establish a conceptual link between actin stabilization by interacting factors and its ability to activate MICALs’ NADPH oxidase activity. Altogether, our results suggest that the regulatory impact of MICALs may differ depending on the isoform-related identities of local actin networks.more » « less
An official website of the United States government

