skip to main content

Title: CHIASM, the human brain albinism and achiasma MRI dataset
Abstract We describe a collection of T1-, diffusion- and functional T2*-weighted magnetic resonance imaging data from human individuals with albinism and achiasma. This repository can be used as a test-bed to develop and validate tractography methods like diffusion-signal modeling and fiber tracking as well as to investigate the properties of the human visual system in individuals with congenital abnormalities. The MRI data is provided together with tools and files allowing for its preprocessing and analysis, along with the data derivatives such as manually curated masks and regions of interest for performing tractography.
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1912270 2203524 2148729 1734853 1636893
Publication Date:
Journal Name:
Scientific Data
Sponsoring Org:
National Science Foundation
More Like this
  1. Diffusion imaging and tractography enable mapping structural connections in the human brain, in-vivo. Linear Fascicle Evaluation (LiFE) is a state-of-the-art approach for pruning spurious connections in the estimated structural connectome, by optimizing its fit to the measured diffusion data. Yet, LiFE imposes heavy demands on computing time, precluding its use in analyses of large connectome databases. Here, we introduce a GPU-based implementation of LiFE that achieves 50-100x speedups over conventional CPU-based implementations for connectome sizes of up to several million fibers. Briefly, the algorithm accelerates generalized matrix multiplications on a compressed tensor through efficient GPU kernels, while ensuring favorable memory access patterns. Leveraging these speedups, we advance LiFE’s algorithm by imposing a regularization constraint on estimated fiber weights during connectome pruning. Our regularized, accelerated, LiFE algorithm (“ReAl-LiFE”) estimates sparser connectomes that also provide more accurate fits to the underlying diffusion signal. We demonstrate the utility of our approach by classifying pathological signatures of structural connectivity in patients with Alzheimer’s Disease (AD). We estimated million fiber whole-brain connectomes, followed by pruning with ReAl-LiFE, for 90 individuals (45 AD patients and 45 healthy controls). Linear classifiers, based on support vector machines, achieved over 80% accuracy in classifying AD patients from healthy controlsmore »based on their ReAl-LiFE pruned structural connectomes alone. Moreover, classification based on the ReAl-LiFE pruned connectome outperformed both the unpruned connectome, as well as the LiFE pruned connectome, in terms of accuracy. We propose our GPU-accelerated approach as a widely relevant tool for non-negative least-squares optimization, across many domains.« less
  2. We propose a novel matrix autoencoder to map functional connectomes from resting state fMRI (rs-fMRI) to structural connectomes from Diffusion Tensor Imaging (DTI), as guided by subject-level phenotypic measures. Our specialized autoencoder infers a low dimensional manifold embedding for the rs-fMRI correlation matrices that mimics a canonical outer-product decomposition. The embedding is simultaneously used to reconstruct DTI tractography matrices via a second manifold alignment decoder and to predict inter-subject phenotypic variability via an artificial neural network. We validate our framework on a dataset of 275 healthy individuals from the Human Connectome Project database and on a second clinical dataset consisting of 57 subjects with Autism Spectrum Disorder. We demonstrate that the model reliably recovers structural connectivity patterns across individuals, while robustly extracting predictive and interpretable brain biomarkers in a cross-validated setting. Finally, our framework outperforms several baselines at predicting behavioral phenotypes in both real-world datasets.
  3. Yap, Pew-Thian (Ed.)
    Diffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue microstructure measurements; however, high b-value DWI images contain high noise levels that can overwhelm the signal of interest and bias microstructural measurements. Here, we propose a simple denoising method that can be applied to any dataset, provided a low-noise, single-subject dataset is acquired using the same DWI sequence. The denoising method uses a one-dimensional convolutional neural network (1D-CNN) and deep learning to learn from a low-noise dataset, voxel-by-voxel. The trained model can then be applied to high-noise datasets from other subjects. We validated the 1D-CNN denoising method by first demonstrating that 1D-CNN denoising resulted in DWI images that were more similar to the noise-free ground truth than comparable denoising methods, e.g., MP-PCA, using simulated DWI data. Using the same DWI acquisition but reconstructed with two common reconstruction methods, i.e. SENSE1 and sum-of-square, to generate a pair of low-noise and high-noise datasets, we then demonstrated that 1D-CNN denoising of high-noise DWI data collected from human subjects showed promising results in three domains: DWI images, diffusion metrics, and tractography. In particular, the denoised images were very similar to a low-noise reference image of that subject, more than the similaritymore »between repeated low-noise images (i.e. computational reproducibility). Finally, we demonstrated the use of the 1D-CNN method in two practical examples to reduce noise from parallel imaging and simultaneous multi-slice acquisition. We conclude that the 1D-CNN denoising method is a simple, effective denoising method for DWI images that overcomes some of the limitations of current state-of-the-art denoising methods, such as the need for a large number of training subjects and the need to account for the rectified noise floor.« less
  4. We investigated the impact of age-related macular degeneration (AMD) on visual acuity and the visual white matter. We combined an adaptive cortical atlas and diffusion-weighted magnetic resonance imaging (dMRI) and tractography to separate optic radiation (OR) projections to different retinal eccentricities in human primary visual cortex. We exploited the known anatomical organization of the OR and clinically relevant data to segment the OR into three primary components projecting to fovea, mid- and far-periphery. We measured white matter tissue properties—fractional anisotropy, linearity, planarity, sphericity—along the aforementioned three components of the optic radiation to compare AMD patients and controls. We found differences in white matter properties specific to OR white matter fascicles projecting to primary visual cortex locations corresponding to the location of retinal damage (fovea). Additionally, we show that the magnitude of white matter properties in AMD patients’ correlates with visual acuity. In sum, we demonstrate a specific relation between visual loss, anatomical location of retinal damage and white matter damage in AMD patients. Importantly, we demonstrate that these changes are so profound that can be detected using magnetic resonance imaging data with clinical resolution. The conserved mapping between retinal and white matter damage suggests that retinal neurodegeneration might be amore »primary cause of white matter degeneration in AMD patients. The results highlight the impact of eye disease on brain tissue, a process that may become an important target to monitor during the course of treatment.« less
  5. The structural network of the brain, or structural connectome, can be represented by fiber bundles generated by a variety of tractography methods. While such methods give qualitative insights into brain structure, there is controversy over whether they can provide quantitative information, especially at the population level. In order to enable population-level statistical analysis of the structural connectome, we propose representing a connectome as a Riemannian metric, which is a point on an infinite-dimensional manifold. We equip this manifold with the Ebin metric, a natural metric structure for this space, to get a Riemannian manifold along with its associated geometric properties. We then use this Riemannian framework to apply object-oriented statistical analysis to define an atlas as the Fréchet mean of a population of Riemannian metrics. This formulation ties into the existing framework for diffeomorphic construction of image atlases, allowing us to construct a multimodal atlas by simultaneously integrating complementary white matter structure details from DWMRI and cortical details from T1-weighted MRI. We illustrate our framework with 2D data examples of connectome registration and atlas formation. Finally, we build an example 3D multimodal atlas using T1 images and connectomes derived from diffusion tensors estimated from a subset of subjects from themore »Human Connectome Project.« less