skip to main content

Title: Substrate-borne vibration in Pacific field cricket courtship displays
While thought to be widely used for animal communication, substrate-borne vibration is relatively unexplored compared to other modes of communication. Substrate-borne vibrations are important for mating decisions in many orthopteran species, yet substrate-borne vibration has not been documented in the Pacific field cricket Teleogryllus oceanicus . Male T. oceanicus use wing stridulation to produce airborne calling songs to attract females and courtship songs to entice females to mate. A new male morph has been discovered, purring crickets, which produce much quieter airborne calling and courtship songs than typical males. Purring males are largely protected from a deadly acoustically orienting parasitoid fly, and they are still able to attract female crickets for mating though typical calling song is more effective for attracting mates. Here, we document the first record of substrate-borne vibration in both typical and purring male morphs of T. oceanicus . We used a paired microphone and accelerometer to simultaneously record airborne and substrate-borne sounds produced during one-on-one courtship trials in the field. Both typical and purring males produced substrate-borne vibrations during courtship that temporally matched the airborne acoustic signal, suggesting that the same mechanism (wing movement) produces both sounds. As previously established, in the airborne channel, purring males more » produce lower amplitude but higher peak frequency songs than typical males. In the vibrational channel, purring crickets produce songs that are higher in peak frequency than typical males, but there is no difference in amplitude between morphs. Because louder songs (airborne) are preferred by females in this species, the lack of difference in amplitude between morphs in the substrate-borne channel could have implications for mating decisions. This work lays the groundwork for investigating variation in substrate-borne vibrations in T. oceanicus , intended and unintended receiver responses to these vibrations, and the evolution of substrate-borne vibrations over time in conjunction with rapid evolutionary shifts in the airborne acoustic signal. « less
Authors:
; ; ;
Award ID(s):
1846520
Publication Date:
NSF-PAR ID:
10304463
Journal Name:
Journal of Orthoptera Research
Volume:
30
Issue:
1
ISSN:
1082-6467
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sexual signals are often transmitted through multiple modalities (e.g., visual and chemical) and under selection from both intended and unintended receivers. Each component of a multimodal signal may be more or less conspicuous to receivers, and signals may evolve to take advantage of available private channels. We recently documented percussive substrate-borne vibrations in the Pacific field cricket (Teleogryllus oceanicus), a species that uses airborne acoustic and chemical signals to attract and secure mates. The airborne signals of Hawaiian T. oceanicus are currently undergoing rapid evolution; at least five novel male morphs have arisen in the past 20 years. Nothing is yet known about the newly discovered percussive substrate-borne vibrations, so we ask “how” they are produced, “who” produces them (e.g., population, morph), “when” they produce them (e.g., whether they are plastic), and “why” (e.g., do they play a role in mating). We show that the vibrations are produced exclusively by males during courtship via foreleg drumming. One novel morph, purring, produces quieter airborne songs and is more likely to drum than the ancestral morph. However, drumming behavior is also contextually plastic for some males; when we removed the ability of males to produce airborne song, ancestral males became moremore »likely to drum, whereas two novel morphs were equally likely to drum regardless of their ability to produce song. Opposite our prediction, females were less likely to mate with males who drummed. We discuss why that might be and describe what we can learn about complex signal evolution from this newly discovered behavior.

    « less
  2. Jennions, Michael D (Ed.)
    Abstract Sexual selection can contribute to speciation when signals and preferences expressed during mate choice are coupled within groups, but come to differ across groups (generating assortative mating). When new sexual signals evolve, it is important to investigate their roles in both mate location and courtship contexts, as both signaling functions are critical in mate choice. In previous work, researchers identified two new male morphs (silent and purring) in Hawaiian populations of the Pacific field cricket, Teleogryllus oceanicus. These morphs likely evolved because they protect males from an acoustically orienting parasitoid, yet still obtain some reproductive success. But, it remains unknown how the purring morph functions in close courtship encounters. We compared the relative success of the very recently evolved purring morph to that of the ancestral and silent morphs during courtship encounters. Purring males produce a novel courtship song and were not as successful in courtship as the ancestral type, but were mounted by females as often and as quickly as the obligately silent morph that arose and spread ~20 years ago. Purring males initiate courtship more quickly than other morphs, and females from populations where purring is common exhibit higher overall mounting rates. Thus, differences in the behaviormore »of purring males and of females from populations where purring is common may have facilitated the origin of this novel sexual signal. We found no assortative mating between males of a given morph and females from their own population, and so we hypothesize that multiple male types will be maintained within the species because each achieves fitness in different ways.« less
  3. Across the animal kingdom, social interactions rely on sound production and perception. From simple cricket chirps to more elaborate bird songs, animals go to great lengths to communicate information critical for reproduction and survival via acoustic signals. Insects produce a wide array of songs to attract a mate, and the intended receivers must differentiate these calls from competing sounds, analyze the quality of the sender from spectrotemporal signal properties, and then determine how to react. Insects use numerically simple nervous systems to analyze and respond to courtship songs, making them ideal model systems for uncovering the neural mechanisms underlying acoustic pattern recognition. We highlight here how the combination of behavioral studies and neural recordings in three groups of insects—crickets, grasshoppers, and fruit flies—reveals common strategies for extracting ethologically relevant information from acoustic patterns and how these findings might translate to other systems.
  4. Synopsis Sound production in tiger moths (Erebidae: Arctiinae) plays a role in natural selection. Some species use tymbal sounds as jamming signals avoiding bat predation. High duty cycle signals have the greatest efficacy in this regard. Tiger moth sounds can also be used for intraspecific communication. Little is known about the role of sound in the mating behavior of jamming species or the signal preferences underlying mate choice. We recorded sound production during the courtship of two high duty cycle arctiines, Bertholdia trigona and Carales arizonensis. We characterized variation in their acoustic signals, measured female preference for male signals that vary in duty cycle, and performed female choice experiments to determine the effect of male duty cycle on the acceptance of male mates. Although both species produced sound during courtship, the role of acoustic communication appears different between the species. Bertholdia trigona was acoustically active in all intraspecific interactions. Females preferred and ultimately mated with males that produced higher duty cycles. Muted males were never chosen. In C. arizonensis however, sound emissions were limited during courtship and in some successful matings no sound was detected. Muted and clicking males were equally successful in female mate-choice experiments, indicating that acoustic communicationmore »is not essential for mating in C. arizonensis. Our results suggest that in B. trigona natural and sexual selection may work in parallel, to favor higher duty cycle clicking.« less
  5. ABSTRACT Acoustic behavior is widespread across vertebrates, including fishes. We report robust acoustic displays during aggressive interactions for a laboratory colony of Danionella dracula, a miniature and transparent species of teleost fish closely related to zebrafish (Danio rerio), which are hypothesized to be sonic based on the presence of a hypertrophied muscle associated with the male swim bladder. Males produce bursts of pulsatile sounds and a distinct postural display – extension of a hypertrophied lower jaw, a morphological trait not present in other Danionella species – during aggressive but not courtship interactions. Females show no evidence of sound production or jaw extension in such contexts. Novel pairs of size-matched or -mismatched males were combined in resident–intruder assays where sound production and jaw extension could be linked to individuals. In both dyad contexts, resident males produced significantly more sound pulses than intruders. During heightened sonic activity, the majority of the highest sound producers also showed increased jaw extension. Residents extended their jaw more than intruders in size-matched but not -mismatched contexts. Larger males in size-mismatched dyads produced more sounds and jaw extensions compared with their smaller counterparts, and sounds and jaw extensions increased with increasing absolute body size. These studies establishmore »D. dracula as a sonic species that modulates putatively acoustic and postural displays during aggressive interactions based on residency and body size, providing a foundation for further investigating the role of multimodal displays in a new model clade for neurogenomic and neuroimaging studies of aggression, courtship and other social interactions.« less