skip to main content

Title: Substrate-borne vibration in Pacific field cricket courtship displays
While thought to be widely used for animal communication, substrate-borne vibration is relatively unexplored compared to other modes of communication. Substrate-borne vibrations are important for mating decisions in many orthopteran species, yet substrate-borne vibration has not been documented in the Pacific field cricket Teleogryllus oceanicus . Male T. oceanicus use wing stridulation to produce airborne calling songs to attract females and courtship songs to entice females to mate. A new male morph has been discovered, purring crickets, which produce much quieter airborne calling and courtship songs than typical males. Purring males are largely protected from a deadly acoustically orienting parasitoid fly, and they are still able to attract female crickets for mating though typical calling song is more effective for attracting mates. Here, we document the first record of substrate-borne vibration in both typical and purring male morphs of T. oceanicus . We used a paired microphone and accelerometer to simultaneously record airborne and substrate-borne sounds produced during one-on-one courtship trials in the field. Both typical and purring males produced substrate-borne vibrations during courtship that temporally matched the airborne acoustic signal, suggesting that the same mechanism (wing movement) produces both sounds. As previously established, in the airborne channel, purring males produce lower amplitude but higher peak frequency songs than typical males. In the vibrational channel, purring crickets produce songs that are higher in peak frequency than typical males, but there is no difference in amplitude between morphs. Because louder songs (airborne) are preferred by females in this species, the lack of difference in amplitude between morphs in the substrate-borne channel could have implications for mating decisions. This work lays the groundwork for investigating variation in substrate-borne vibrations in T. oceanicus , intended and unintended receiver responses to these vibrations, and the evolution of substrate-borne vibrations over time in conjunction with rapid evolutionary shifts in the airborne acoustic signal.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Orthoptera Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sexual signals are often transmitted through multiple modalities (e.g., visual and chemical) and under selection from both intended and unintended receivers. Each component of a multimodal signal may be more or less conspicuous to receivers, and signals may evolve to take advantage of available private channels. We recently documented percussive substrate-borne vibrations in the Pacific field cricket (Teleogryllus oceanicus), a species that uses airborne acoustic and chemical signals to attract and secure mates. The airborne signals of Hawaiian T. oceanicus are currently undergoing rapid evolution; at least five novel male morphs have arisen in the past 20 years. Nothing is yet known about the newly discovered percussive substrate-borne vibrations, so we ask “how” they are produced, “who” produces them (e.g., population, morph), “when” they produce them (e.g., whether they are plastic), and “why” (e.g., do they play a role in mating). We show that the vibrations are produced exclusively by males during courtship via foreleg drumming. One novel morph, purring, produces quieter airborne songs and is more likely to drum than the ancestral morph. However, drumming behavior is also contextually plastic for some males; when we removed the ability of males to produce airborne song, ancestral males became more likely to drum, whereas two novel morphs were equally likely to drum regardless of their ability to produce song. Opposite our prediction, females were less likely to mate with males who drummed. We discuss why that might be and describe what we can learn about complex signal evolution from this newly discovered behavior.

    more » « less
  2. Abstract

    Divergence of sexual signals between populations can lead to speciation, yet opportunities to study the immediate aftermath of novel signal evolution are rare. The recent emergence and spread of a new mating song, purring, in Hawaiian populations of the Pacific field cricket (Teleogryllus oceanicus) allows us to investigate population divergence soon after the origin of a new signal. Male crickets produce songs with specialized wing structures to attract mates from afar (calling) and entice them to mate when found (courtship). However, in Hawaii, these songs also attract an eavesdropping parasitoid fly (Ormia ochracea) that kills singing males. The novel purring song, produced with heavily modified wing morphology, attracts female crickets but not the parasitoid fly, acting as a solution to this conflict between natural and sexual selection. We've recently observed increasing numbers of purring males across Hawaii. In this integrative field study, we investigated the distribution of purring and the proportion of purring males relative to other morphs in six populations on four islands and compared a suite of phenotypic traits (wing morphology, calling song and courtship song) that make up this novel signal across populations of purring males. We show that purring is found in varying proportions across five, and is locally dominant in four, Hawaiian populations. We also show that calling songs, courtship songs and wing morphology of purring males differ geographically. Our findings demonstrate the rapid pace of evolution in island populations and provide insights into the emergence and divergence of new sexual signals over time.

    more » « less
  3. Jennions, Michael D (Ed.)
    Abstract Sexual selection can contribute to speciation when signals and preferences expressed during mate choice are coupled within groups, but come to differ across groups (generating assortative mating). When new sexual signals evolve, it is important to investigate their roles in both mate location and courtship contexts, as both signaling functions are critical in mate choice. In previous work, researchers identified two new male morphs (silent and purring) in Hawaiian populations of the Pacific field cricket, Teleogryllus oceanicus. These morphs likely evolved because they protect males from an acoustically orienting parasitoid, yet still obtain some reproductive success. But, it remains unknown how the purring morph functions in close courtship encounters. We compared the relative success of the very recently evolved purring morph to that of the ancestral and silent morphs during courtship encounters. Purring males produce a novel courtship song and were not as successful in courtship as the ancestral type, but were mounted by females as often and as quickly as the obligately silent morph that arose and spread ~20 years ago. Purring males initiate courtship more quickly than other morphs, and females from populations where purring is common exhibit higher overall mounting rates. Thus, differences in the behavior of purring males and of females from populations where purring is common may have facilitated the origin of this novel sexual signal. We found no assortative mating between males of a given morph and females from their own population, and so we hypothesize that multiple male types will be maintained within the species because each achieves fitness in different ways. 
    more » « less
  4. Japanese Rhinoceros beetles (Trypoxylus dichotomous), known primarily for their large horns, are a classic example of ornate weaponry produced through sexual selection. The male beetle’s prominent horns are used in male-to-male combat for dominance and access to females. Observations in the lab and the field suggest that multiple forms of signaling are also involved in both the aggressive interactions and female mate choice. One such signal seems to be the songs created through male abdominal stridulation. Males perform both an alarm-style chirp (also seen in aggressive interactions) and rhythmic “purring” prior to copulation attempts. Several questions arise in relation to this behavior and its effect on mating outcomes: Is there a relationship between song characteristics and morphological characteristics? Can vibrations be transmitted through the surrounding substrate? Is there a relationship between song characteristics and courtship outcomes? To analyze these songs in the field, a Polytech VibroGo VG-200 laser vibrometer was used to measure the velocity of both the male’s elytra and surrounding tree bark during courtship. Vibrational amplitude and periodicity, corresponding location, beetle characteristics, and courtship details were collected. Male courtship song characteristics will be compared to morphological variables, as well as courtship outcomes. Substrate vibration transmission and attenuation will also be discussed. 
    more » « less
  5. Abstract

    Animals eavesdrop on signals and cues generated by prey, predators, hosts, parasites, competing species, and conspecifics, and the conspicuousness of sexual signals makes them particularly susceptible. Yet, when sexual signals evolve, most attention is paid to impacts on intended receivers (potential mates) rather than fitness consequences for eavesdroppers. Using the rapidly evolving interaction between the Pacific field cricket,Teleogryllus oceanicus, and the parasitoid fly,Ormia ochracea, we asked how parasitoids initially respond to novel changes in host signals. We recently discovered a novel sexual signal, purring song, in Hawaiian populations ofT. oceanicusthat appears to have evolved because it protects the cricket from the parasitoid while still allowing males to attract female crickets for mating. In Hawaii, there are no known alternative hosts for the parasitoid, so we would expect flies to be under selection to detect and attend to the new purring song. We used complementary field and laboratory phonotaxis experiments to test fly responses to purring songs that varied in many dimensions, as well as to ancestral song. We found that flies strongly prefer ancestral song over purring songs in both the field and the lab, but we caught more flies to purring songs in the field than reported in previous work, indicating that flies may be exerting some selective pressure on the novel song. When played at realistic amplitudes, we found no preferences–flies responded equally to all purrs that varied in frequency, broadbandedness, and temporal measures. However, our lab experiment did reveal the first evidence of preference for purring song amplitude, as flies were more attracted to purrs played at amplitudes greater than naturally occurring purring songs. As purring becomes more common throughout Hawaii, flies that can use purring song to locate hosts should be favored by selection and increase in frequency.

    more » « less