skip to main content


Title: Using Inter-institutional Collaboration to Generate Publishable Findings through Course-Based Undergraduate Research Experiences
Course-based undergraduate research experiences (CUREs) are high-impact practices that allow students to conduct research during class time. Benefits of a CURE can be maximized when integrated into a faculty member’s ongoing research. However, this can be particularly challenging for field biologists, especially when field sites are not situated near their university. Indeed, few existing CUREs are field based. One solution is to partner with a collaborator near the field site. We describe a semester-long CURE in an animal behavior class that involved collaboration among three institutions: researchers from two “distant” institutions have ongoing research at the “local” institution where the CURE took place. This model uses remote conferencing and strategic collaboration to meet all stakeholders’ needs. Undergraduate students engaged as active participants in collaborative inquiry-based work, learned in a cooperative context, and even participated in the publication process. The local principal investigator and their institution generated a high-impact course that integrated research and teaching. Likewise, the distant principal investigators were able to collect more extensive and longer-term field-based data than otherwise possible, and they gained valuable input from the local researchers that contributed to future projects. Remote collaborations open the door to international collaboration with smaller institutions, promoting greater inclusion in science.  more » « less
Award ID(s):
1846520
NSF-PAR ID:
10304465
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The American Biology Teacher
Volume:
83
Issue:
7
ISSN:
0002-7685
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Course-based undergraduate research experiences (CUREs) are well-documented as high-impact practices that can broaden participation and success in STEM. Drawing primarily from a community-of-practice theoretical framework, we previously developed an interdisciplinary CURE course (Science Bootcamp) for STEM majors focused entirely on the scientific process. Among first-year students, Science Bootcamp leads to psychosocial gains and increased retention. In the current study, we test whether an online Science Bootcamp also improves outcomes for STEM transfer students—a group that faces “transfer shock,” which can negatively impact GPA, psychosocial outcomes, and retention. To this end, we redesigned Science Bootcamp to a two-week course for STEM transfer students to complete prior to beginning the fall semester at our four-year institution. Due to the COVID-19 pandemic, the course was conducted in an entirely virtual format, using primarily synchronous instruction. Despite the course being virtual, the diverse group of STEM majors worked in small groups to conduct rigorous, novel empirical research projects from start to finish, even presenting their results in a poster symposium. Assessment data confirm the compressed, online Science Bootcamp contains key CURE components—opportunities for collaboration, discovery/relevance, and iteration—and that students were highly satisfied with the course. Moreover, in line with our hypothesis, STEM transfer students who participated in the online Science Bootcamp experienced a range of psychosocial gains (e.g., belonging to STEM). In sum, these findings suggest our online Science Bootcamp promotes positive STEM outcomes, representing a highly flexible and affordable CURE that can be scaled for use at institutions of any size. 
    more » « less
  2. Responding to the need to teach remotely due to COVID-19, we used readily available computational approaches (and developed associated tutorials (https://mdh-cures-community.squarespace.com/virtual-cures-and-ures)) to teach virtual Course-Based Undergraduate Research Experience (CURE) laboratories that fulfil generally accepted main components of CUREs or Undergraduate Research Experiences (UREs): Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis, Conclusions, and Presentation1. We then developed and taught remotely, in three phases, protein-centric CURE activities that are adaptable to virtually any protein, emphasizing contributions of noncovalent interactions to structure, binding and catalysis (an ASBMB learning framework2 foundational concept). The courses had five learning goals (unchanged in the virtual format),focused on i) use of primary literature and bioinformatics, ii) the roles of non-covalent interactions, iii) keeping accurate laboratory notebooks, iv) hypothesis development and research proposal writing, and, v) presenting the project and drawing evidence based conclusions The first phase, Developing a Research Proposal, contains three modules, and develops hallmarks of a good student-developed hypothesis using available literature (PubMed3) and preliminary observations obtained using bioinformatics, Module 1: Using Primary Literature and Data Bases (Protein Data Base4, Blast5 and Clustal Omega6), Module 2: Molecular Visualization (PyMol7 and Chimera8), culminating in a research proposal (Module 3). Provided rubrics guide student expectations. In the second phase, Preparing the Proteins, students prepared necessary proteins and mutants using Module 4: Creating and Validating Models, which leads users through creating mutants with PyMol, homology modeling with Phyre29 or Missense10, energy minimization using RefineD11 or ModRefiner12, and structure validation using MolProbity13. In the third phase, Computational Experimental Approaches to Explore the Questions developed from the Hypothesis, students selected appropriate tools to perform their experiments, chosen from computational techniques suitable for a CURE laboratory class taught remotely. Questions, paired with computational approaches were selected from Modules 5: Exploring Titratable Groups in a Protein using H++14, 6: Exploring Small Molecule Ligand Binding (with SwissDock15), 7: Exploring Protein-Protein Interaction (with HawkDock16), 8: Detecting and Exploring Potential Binding Sites on a Protein (with POCASA17 and SwissDock), and 9: Structure-Activity Relationships of Ligand Binding & Drug Design (with SwissDock, Open Eye18 or the Molecular Operating Environment (MOE)19). All involve freely available computational approaches on publicly accessible web-based servers around the world (with the exception of MOE). Original literature/Journal club activities on approaches helped students suggest tie-ins to wet lab experiments they could conduct in the future to complement their computational approaches. This approach allowed us to continue using high impact CURE teaching, without changing our course learning goals. Quantitative data (including replicates) was collected and analyzed during regular class periods. Students developed evidence-based conclusions and related them to their research questions and hypotheses. Projects culminated in a presentation where faculty feedback was facilitated with the Virtual Presentation platform from QUBES20 These computational approaches are readily adaptable for topics accessible for first to senior year classes and individual research projects (UREs). We used them in both partial and full semester CUREs in various institutional settings. We believe this format can benefit faculty and students from a wide variety of teaching institutions under conditions where remote teaching is necessary. 
    more » « less
  3. Course-Based Undergraduate Research Experiences or CUREs promote student-centered learning through infusion of research principles within an undergraduate course. This is an ideal pedagogy for use in General Chemistry. CUREs provide access to research experience to a broader audience, which increases engagement and success. A CURE model was implemented in a second semester General Chemistry course at Pasadena City College, a Hispanic serving institution (HSI) community college. Student success rate in the CURE chemistry classroom increased by over 20% and students’ completion rates increased over 5%. In addition, success, and completion rates of Hispanic students in the class showed no achievement gap and an over 10% higher completion rate compared to students that took the non-CURE chemistry course. CUREs also had the added benefit of providing more populous groups of undergraduates with opportunities to get a taste of real-world working scenarios that would normally be reserved for upper-level graduate students. Adopting CUREs as an integral part of an institutions’ learning strategies promotes student engagement that will bridge the gaps in traditional learning, but also facilitate development of the essential soft skills required in the collaborative environment that is commonplace in working professional settings. The potential role and relationship of CUREs implementation regarding the revival and cultivation of polymathy among future students as well as its implications on the future of academic instruction based on connections made from historical and interdisciplinary observations are also explores. 
    more » « less
  4. Humanitarian mine action (HMA) is a critically under-researched field when compared to other hazards fields of similar societal impact. A potential solution to this problem is early exposure to and engagement in the HMA field in undergraduate education. Early undergraduate education emphasizing technical and social aspects of HMA can help protect lives by building a robust pipeline of passionate researchers who will find new solutions to the global explosive ordnance (EO) crisis. Early engagement of the next generation of HMA researchers and policy makers can occur through various classroom experiences, undergraduate research projects, and public outreach events. These include but are not limited to course-based undergraduate research experiences (CUREs); presenting research results at local, national, and international conferences; dissemination in edited and peer-reviewed publications; local community events; and through social media outreach. Early engagement, active guidance, and mentorship of such students by mid-career and experienced HMA scholars and practitioners could dramatically reduce the learning curve associated with entry into the HMA sector and allow for more fruitful long-term collaboration between academic institutions, private industry, and leading nongovernmental organizations (NGOs) operating across different facets of HMA. 
    more » « less
  5. Abstract

    The drive to broaden equitable access to undergraduate research experiences has catalyzed the development and implementation of course‐based undergraduate research experiences (CUREs). Biology education has prioritized embedding CUREs in introductory labs, which are frequently taught by graduate teaching assistants (GTAs). Thus, a CURE GTA is expected not only to teach but also to support novice student researchers. We know little about how GTAs perform as research mentors in a CURE, or how the quality of their mentorship and support impacts undergraduate students. To address this gap in knowledge, we conducted a phenomenological study of an introductory biology CURE, interviewing 25 undergraduate students taught by nine different GTAs at a single institution. We used self‐determination theory to guide our exploration of how students' autonomous motivation to engage in a CURE is impacted by perceptions of GTA support. We found that highly motivated students were more likely to experience factors hypothesized to optimize motivation in the CURE, and to perceive that their GTA was highly supportive of these elements. Students with lower motivation were less likely to report engaging in fundamental elements of research offered in a CURE. Our findings suggest that GTAs directly impact students' motivation, which can, in turn, influence whether students perceive receiving the full research experience as intended in a CURE. We contend that practitioners who coordinate CUREs led by GTAs should therefore offer curated training that emphasizes supporting students' autonomous motivation in the course and engagement in the research. Our work suggests that GTAs may differ in their capacity to provide students with the support they need to receive and benefit from certain pedagogical practices. Future work assessing innovative approaches in undergraduate biology laboratory courses should continue to investigate potenital differential outcomes for students taught by GTAs.

     
    more » « less