skip to main content

Title: Application of species-specific primers to estimate the in situ diet of Bythotrephes [Cladocera, Onychopoda] in its native European range via molecular gut content analysis
Abstract

The study of invasive species often focuses on regions of recent introduction rather than native habitats. Understanding an invasive species in its natural environment, however, can provide important insights regarding the long-term outcome of invasions. In this study we investigated the diet of the invasive spiny water flea, Bythotrephes longimanus, in two Austrian perialpine lakes, where it is native. The gut contents of wild-caught Bythotrephes individuals were estimated by quantitative polymerase chain reaction, targeting species-specific fragments of the barcoding region of the cytochrome c oxidase I gene of potential prey. The observed prey spectrum of Bythotrephes in the study lakes consisted primarily of Eudiaptomus gracilis and Diaphanosoma brachyurum. The Daphnia longispina complex, Leptodora kindtii and Mesocyclops leuckarti also contributed to the diet. Results indicate that Bythotrephes is a generalist feeder with a preference for epilimnetic prey.

Authors:
 ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10304486
Journal Name:
Journal of Plankton Research
Volume:
43
Issue:
6
Page Range or eLocation-ID:
p. 945-956
ISSN:
0142-7873
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Ross, Darrell (Ed.)
    Abstract The yellow paper wasp, Polistes versicolor (Olivier) was first recorded in the Galapagos archipelago in 1988. Its life cycle and ecological impacts were studied on two islands 11 yr after it was first discovered. This invasive wasp adapted quickly and was found in most environments. Colony counts and adult wasp monitoring showed a strong preference for drier habitats. Nest activities were seasonally synchronized, nest building followed the rains in the hot season (typically January–May), when insect prey increases, and peaked as temperature and rains started to decline. Next, the number of adult wasps peaked during the cool season when there is barely any rain in the drier zones. In Galapagos, almost half of the prey loads of P. versicolor were lepidopteran larvae, but wasps also carried spiders, beetles, and flies back to the colonies. An estimated average of 329 mg of fresh insect prey was consumed per day for an average colony of 120–150 wasp larvae. The wasps preyed upon native and introduced insects, but likely also affect insectivorous vertebrates as competitors for food. Wasps may also compete with native pollinators as they regularly visited flowers to collect nectar, and have been recorded visiting at least 93 plant speciesmore »in Galapagos, including 66 endemic and native plants. Colonies were attacked by a predatory moth, Taygete sphecophila (Meyrick) (Lepidoptera: Autostichidae), but colony development was not arrested. High wasp numbers also affect the activities of residents and tourists. A management program for this invasive species in the archipelago is essential.« less
  2. Abstract The round goby ( Neogobius melanostomus ) is a successful invader of the Great Lakes–St Lawrence River basin that harbours a number of local parasites. The most common are metacercariae of the genus Diplostomum . Species of Diplostomum are morphologically difficult to distinguish but can be separated using molecular techniques. While a few species have been sequenced from invasive round gobies in this study system, their relative abundance has not been documented. The purpose of this study was to determine the species composition of Diplostomum spp. and their relative abundance in round gobies in the St Lawrence River by sequencing the barcode region of cytochrome c oxidase I. In 2007–2011, Diplostomum huronense (= Diplostomum sp. 1) was the most common, followed in order by Diplostomum indistinctum (= Diplostomum sp. 4) and Diplostomum indistinctum sensu Galazzo, Dayanandan, Marcogliese & McLaughlin (2002). In 2012, the most common species infecting the round goby in the St Lawrence River was D. huronense , followed by D. indistinctum and Diplostomum gavium (= Diplostomum sp. 3). The invasion of the round goby in the St Lawrence River was followed by a decline of Diplostomum spp. in native fishes to low levels, leading to the previouslymore »published hypothesis that the presence of the round goby has led to a dilution effect. Herein, it is suggested that despite the low infection levels in the round goby, infections still may lead to spillback, helping to maintain Diplostomum spp. in native fishes, albeit at low levels.« less
  3. Abstract

    The distal gut is home to the dynamic and influential gut microbiome, which is intimately linked to mammalian health by promoting and facilitating countless physiological functions. In a time of increased anthropogenic pressures on wildlife due to widespread habitat destruction, loss of natural prey/foods, and rapid urbanization, the study of wildlife gut microbiomes could prove to be a valuable tool in wildlife management and conservation. Diet is one of the most influential determinants of a host’s gut microbiome; yet many wildlife agencies allow baiting to facilitate wildlife harvest, although the impact of human-provisioned foods on wildlife gut health is largely unknown. We used stable isotope analysis derived from carbon (δ 13C) to index the use of human-provisioned foods by 35 legally harvested American black bears (Ursus americanus), and16S rRNA gene amplicon sequencing to examine the impact of human-provisioned foods on the gut microbial diversity of black bears. We found that greater long-term consumption of human-provisioned foods was associated with significantly reduced microbial species richness and phylogenetic diversity. Our results indicate that consumption of anthropogenic foods through baiting significantly alters the mammalian gut microbiome.

  4. Abstract

    Birds increase crop yields via consumption of pests in some contexts but disrupt pest control via intraguild predation in others. Landscape complexity acts as an inconsistent mediator, sometimes increasing, decreasing, or not impacting pest control. Here, we examined how landscape context and seasonal variation mediate the impact of birds on arthropod pests and natural enemies, leaf damage, and yields of broccoli (Brassica oleracea) on highly diversified farms that spanned the USA west coast. Our study had two complementary components: a bird exclusion experiment and molecular diet analysis of 357 fecal samples collected from the most commonly captured bird species that also foraged in Brassica fields—American Goldfinch (Spinus tristis), American Robin (Turdus migratorius), Savannah Sparrow (Passerculus sandwichensis), Song Sparrow (Melospiza melodia), and White-crowned Sparrow (Zonotrichia leucophrys). Bird access yielded higher, rather than lower, numbers of pest aphids and increased their parasitism, while no other arthropods examined were consistently impacted. Independent of bird presence, percent natural cover in the landscape sometimes increased and sometimes decreased densities of arthropods in the mid-growth period, with diminishing impacts in the late-growth period. Herbivore feeding damage to broccoli leaves decreased with increasing amounts of natural land cover and in the late-growth period. Molecular diet analysismore »revealed that Brassica pests and predatory arthropods were relatively uncommon prey for birds. Landscape context did not alter the prey items found in bird diets. Altogether, our bird-exclusion experiment and molecular diet analysis suggested that birds have relatively modest impacts on the arthropods associated with broccoli plantings. More broadly, the limited support in our study for net natural pest control services suggests that financial incentives may be required to encourage the adoption of bird-friendly farming practices in certain cropping systems.

    « less
  5. ABSTRACT

    Hummingbirds, a highly diverse avian family, are specialized vertebrate pollinators that feed upon carbohydrate-rich nectar to fuel their fast metabolism while consuming invertebrates to obtain protein. Previous work has found that morphologically diverse hummingbird communities exhibit higher diet specialization on floral resources than morphologically similar hummingbird communities. Due to the difficulties of studying avian diets, we have little understanding whether hummingbirds show similar patterns with their invertebrate prey. Here, we use DNA metabarcoding to analyze floral and invertebrate diets of 3 species of sympatric North American hummingbirds. We collected fecal samples from 89 Anna’s (Calypte anna), 39 Black-chinned (Archilochus alexandri), and 29 Calliope (Selasphorus calliope) hummingbirds in urban and rural localities as well as across an elevational gradient from sea level to 2,500 meters above sea level in California, USA. We found hummingbirds showed high dietary overlap in both invertebrate and plant resources, with few invertebrate and plant families common to most individuals and many families found in only a few individuals. Chironomidae was the most common invertebrate family across all species, and Rosaceae and Orobanchaceae were the most common plant families. Anna’s Hummingbirds had significantly higher invertebrate diet diversity than Black-chinned Hummingbirds when found at the same sites,more »but we found no difference in plant diet diversity among any of the 3 species. Hummingbirds in urban sites had higher plant diet diversity than in rural sites, but we found no effect of elevation on dietary richness. Our study shows how DNA metabarcoding can be used to non-invasively investigate previously unknown life-histories of well-studied birds, lending insight to community structure, function, and evolution.

    « less