skip to main content

Title: Millisecond exoplanet imaging: II. regression equations and technical discussion

The leading difficulty in achieving the contrast necessary to directly image exoplanets and associated structures (e.g., protoplanetary disks) at wavelengths ranging from the visible to the infrared is quasi-static speckles (QSSs). QSSs are hard to distinguish from planets at the necessary level of precision to achieve high contrast. QSSs are the result of hardware aberrations that are not compensated for by the adaptive optics (AO) system; these aberrations are called non-common path aberrations (NCPAs). In 2013, Frazin showed how simultaneous millisecond telemetry from the wavefront sensor (WFS) and a science camera behind a stellar coronagraph can be used as input into a regression scheme that simultaneously and self-consistently estimates NCPAs and the sought-after image of the planetary system (exoplanetimage). When run in a closed-loop configuration, the WFS measures the corrected wavefront, called theAO residual(AOR)wavefront. The physical principle underlying the regression method is rather simple: when an image is formed at the science camera, the AOR modules both the speckles arising from NCPAs as well as the planetary image. Therefore, the AOR can be used as a probe to estimate NCPA and the exoplanet image via regression techniques. The regression approach is made more difficult by the fact that more » the AOR is not exactly known since it can be estimated only from the WFS telemetry. The simulations in the Part I paper provide results on the joint regression on NCPAs and the exoplanet image from three different methods, calledideal,naïve, andbias-correctedestimators. The ideal estimator is not physically realizable (it is useful as a benchmark for simulation studies), but the other two are. The ideal estimator uses true AOR values (available in simulation studies), but it treats the noise in focal plane images via standard linearized regression. Naïve regression uses the same regression equations as the ideal estimator, except that it substitutes the estimated values of the AOR for true AOR values in the regression formulas, which can result in problematic biases (however, Part I provides an example in which the naïve estimate makes a useful estimate of NCPAs). The bias-corrected estimator treats the errors in AOR estimates, but it requires the probability distribution that governs the errors in AOR estimates. This paper provides the regression equations for ideal, naïve, and bias-corrected estimators, as well as a supporting technical discussion.

« less
Publication Date:
Journal Name:
Journal of the Optical Society of America A
Page Range or eLocation-ID:
Article No. 1557
1084-7529; JOAOD6
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the top priorities in observational astronomy is the direct imaging and characterization of extrasolar planets (exoplanets) and planetary systems. Direct images of rocky exoplanets are of particular interest in the search for life beyond the Earth, but they tend to be rather challenging targets since they are orders-of-magnitude dimmer than their host stars and are separated by small angular distances that are comparable to the classicalλ<#comment/>/Ddiffraction limit, even for the coming generation of 30 m class telescopes. Current and planned efforts for ground-based direct imaging of exoplanets combine high-order adaptive optics (AO) with a stellar coronagraph observing at wavelengths ranging from the visible to the mid-IR. The primary barrier to achieving high contrast with current direct imaging methods is quasi-static speckles, caused largely by non-common path aberrations (NCPAs) in the coronagraph optical train. Recent work has demonstrated that millisecond imaging, which effectively “freezes” the atmosphere’s turbulent phase screens, should allow the wavefront sensor (WFS) telemetry to be used as a probe of the optical system to measure NCPAs. Starting with a realistic model of a telescope with an AO system and a stellar coronagraph, this paper provides simulations of several closely related regression models that take advantagemore »of millisecond telemetry from the WFS and coronagraph’s science camera. The simplest regression model, called the naïve estimator, does not treat the noise and other sources of information loss in the WFS. Despite its flaws, in one of the simulations presented herein, the naïve estimator provides a useful estimate of an NCPA of∼<#comment/>0.5radian RMS (≈<#comment/>λ<#comment/>/13), with an accuracy of∼<#comment/>0.06radian RMS in 1 min of simulated sky time on a magnitude 8 star. Thebias-corrected estimatorgeneralizes the regression model to account for the noise and information loss in the WFS. A simulation of the bias-corrected estimator with 4 min of sky time included an NCPA of∼<#comment/>0.05radian RMS (≈<#comment/>λ<#comment/>/130) and an extended exoplanet scene. The joint regression of the bias-corrected estimator simultaneously achieved an NCPA estimate with an accuracy of∼<#comment/>5×<#comment/>10−<#comment/>3radian RMS and an estimate of the exoplanet scene that was free of the self-subtraction artifacts typically associated with differential imaging. The5σ<#comment/>contrast achieved by imaging of the exoplanet scene was∼<#comment/>1.7×<#comment/>10−<#comment/>4at a distance of3λ<#comment/>/Dfrom the star and∼<#comment/>2.1×<#comment/>10−<#comment/>5at10λ<#comment/>/D. These contrast values are comparable to the very best on-sky results obtained from multi-wavelength observations that employ both angular differential imaging (ADI) and spectral differential imaging (SDI). This comparable performance is despite the fact that our simulations are quasi-monochromatic, which makes SDI impossible, nor do they have diurnal field rotation, which makes ADI impossible. The error covariance matrix of the joint regression shows substantial correlations in the exoplanet and NCPA estimation errors, indicating that exoplanet intensity and NCPA need to be estimated self-consistently to achieve high contrast.

    « less
  2. The success of ground-based, high contrast imaging for the detection of exoplanets in part depends on the ability to differentiate between quasi-static speckles caused by aberrations not corrected by adaptive optics (AO) systems, known as non-common path aberrations (NCPAs), and the planet intensity signal. Frazin (ApJ, 2013) introduced a post-processing algorithm demonstrating that simultaneous millisecond exposures in the science camera and wavefront sensor (WFS) can be used with a statistical inference procedure to determine both the series expanded NCPA coefficients and the planetary signal. We demonstrate, via simulation, that using this algorithm in a closed-loop AO system, real-time estimation and correction of the quasi-static NCPA is possible without separate deformable mirror (DM) probes. Thus the use of this technique allows for the removal of the quasi-static speckles that can be mistaken for planetary signals without the need for new optical hardware, improving the efficiency of ground-based exoplanet detection. In our simulations, we explore the behavior of the Frazin Algorithm (FA) and the dependence of its convergence to an accurate estimate on factors such as Strehl ratio, NCPA strength, and number of algorithm search basis functions. We then apply this knowledge to simulate running the algorithm in real-time in a nearlymore »ideal setting. We then discuss adaptations that can be made to the algorithm to improve its real-time performance, and show their efficacy in simulation. A final simulation tests the technique’s resilience against imperfect knowledge of the AO residual phase, motivating an analysis of the feasibility of using this technique in a real closed-loop Extreme AO system such as SCExAO or MagAO-X, in terms of computational complexity and the accuracy of the estimated quasi-static NCPA correction.« less
  3. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    Uncorrected residual wavefront errors limit the ultimate performance of adaptive optics (AO) systems. We present different contributing factors and techniques to estimate and compensate these wavefront errors in the Keck natural guide star (NGS) AO systems. The error terms include low order static and semi-static aberrations from multiple sources, periodic and random segment piston errors, single-segment low order aberrations, wavefront sensor aliasing, vibrations, calibration drifts, and AO-to-telescope offload related errors. We present the design of a new AO subsystem, a residual wavefront controller (rWFC) to monitor the performance of the AO control loops and the image quality of the AO science instruments and apply the necessary changes to the telescope and AO parameters to minimize the residual wavefront errors. The distributed system consists of components at the telescope, AO bench and the science instruments. A few components of this system are already tested as on-demand standalone tools and will be integrated into a high-level graphical user interface (GUI) to operate the system. The software tool will periodically collect AO telemetry data, perform control loop parameter optimization and update AO parameters such as loop gains, centroid gain, etc. In addition, the system will analyze the science data at the end ofmore »each exposure and estimate telescope/AO performance when a bright point source is available in the science field. The benefits of reducing or eliminating the residual wavefront errors have broad implications for optical astronomy. Testing these techniques on a segmented telescope will be extremely useful to the teams developing high contrast AO systems for all extremely large telescopes and future segmented space telescopes.« less
  4. Optical coherence microscopy (OCM) uses interferometric detection to capture the complex optical field with high sensitivity, which enables computational wavefront retrieval using back-scattered light from the sample. Compared to a conventional wavefront sensor, aberration sensing with OCM via computational adaptive optics (CAO) leverages coherence and confocal gating to obtain signals from the focus with less cross-talk from other depths or transverse locations within the field-of-view. Here, we present an investigation of the performance of CAO-based aberration sensing in simulation, bead phantoms, andex vivomouse brain tissue. We demonstrate that, due to the influence of the double-pass confocal OCM imaging geometry on the shape of computed pupil functions, computational sensing of high-order aberrations can suffer from signal attenuation in certain spatial-frequency bands and shape similarity with lower order counterparts. However, by sensing and correcting only low-order aberrations (astigmatism, coma, and trefoil), we still successfully corrected tissue-induced aberrations, leading to 3× increase in OCM signal intensity at a depth of ∼0.9 mm in a freshly dissectedex vivomouse brain.

  5. Fourier ptychographic microscopy is a computational imaging technique that provides quantitative phase information and high resolution over a large field-of-view. Although the technique presents numerous advantages over conventional microscopy, model mismatch due to unknown optical aberrations can significantly limit reconstruction quality. A practical way of correcting for aberrations without additional data capture is through algorithmic self-calibration, in which a pupil recovery step is embedded into the reconstruction algorithm. However, software-only aberration correction is limited in accuracy. Here, we evaluate the merits of implementing a simple, dedicated calibration procedure for applications requiring high accuracy. In simulations, we find that for a target sample reconstruction error, we can image without any aberration corrections only up to a maximum aberration magnitude ofλ/40. When we use algorithmic self-calibration, we can tolerate an aberration magnitude up toλ/10 and with our proposed diffuser calibration technique, this working range is extended further toλ/3. Hence, one can trade off complexity for accuracy by using a separate calibration process, which is particularly useful for larger aberrations.