skip to main content


Title: The limiting factors and regulatory processes that control the environmental responses of C3, C3–C4 intermediate, and C4 photosynthesis
Abstract

Here, we describe a model of C3, C3–C4intermediate, and C4photosynthesis that is designed to facilitate quantitative analysis of physiological measurements. The model relates the factors limiting electron transport and carbon metabolism, the regulatory processes that coordinate these metabolic domains, and the responses to light, carbon dioxide, and temperature. It has three unique features. First, mechanistic expressions describe how the cytochrome b6f complex controls electron transport in mesophyll and bundle sheath chloroplasts. Second, the coupling between the mesophyll and bundle sheath expressions represents how feedback regulation of Cyt b6f coordinates electron transport and carbon metabolism. Third, the temperature sensitivity of Cyt b6f is differentiated from that of the coupling between NADPH, Fd, and ATP production. Using this model, we present simulations demonstrating that the light dependence of the carbon dioxide compensation point in C3–C4leaves can be explained by co-occurrence of light saturation in the mesophyll and light limitation in the bundle sheath. We also present inversions demonstrating that population-level variation in the carbon dioxide compensation point in a Type I C3–C4plant,Flaveriachloraefolia, can be explained by variable allocation of photosynthetic capacity to the bundle sheath. These results suggest that Type I C3–C4intermediate plants adjust pigment and protein distributions to optimize the glycine shuttle under different light and temperature regimes, and that the malate and aspartate shuttles may have originally functioned to smooth out the energy supply and demand associated with the glycine shuttle. This model has a wide range of potential applications to physiological, ecological, and evolutionary questions.

 
more » « less
NSF-PAR ID:
10304575
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Oecologia
Volume:
197
Issue:
4
ISSN:
0029-8549
Page Range / eLocation ID:
p. 841-866
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The GreenCut encompasses a suite of nucleus‐encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non‐photosynthetic/heterotrophic organisms. InChlamydomonas reinhardtii,CPLD49 (Conserved inPlantLineage andDiatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that acpld49mutant has impaired photoautotrophic growth under high‐light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochromeb6fcomplex (Cytb6f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore,CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein,CPLD38; a mutant null forCPLD38 also impacts Cytb6fcomplex accumulation. We investigated several potential functions ofCPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis thatCPLD38 andCPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6fcomplex. Based on motifs ofCPLD49 and the activities of otherCPLD49‐like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6f.

     
    more » « less
  2. Abstract

    A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun‐induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3/C4species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.

     
    more » « less
  3. Summary

    The cold acclimations of mesophyll conductance (gm), bundle‐sheath conductance (gbs) and the CO2concentrating mechanism (CCM) of C4plants have not been well studied.

    Here, we estimated the temperature response ofgm,gbsand leakiness (ϕ), the amount of concentrated CO2that escapes the bundle‐sheath cells, for the chilling‐tolerant C4plantMiscanthus × giganteusgrown at 14 and 25°C. To estimate these parameters, we combined the C4‐enzyme‐limited photosynthesis model and the Δ13C discrimination model. These combined models were parameterised usingin vitroactivities of carbonic anhydrase (CA), pyruvate, phosphate dikinase (PPDK), ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO), and phosphoenolpyruvate carboxylase (PEPc).

    Cold‐grownMiscanthusplants increasedin vitroactivities of RuBisCO and PPDK but decreased PEPc activity compared with warm‐grown plants. Mesophyll conductance andgbsresponded strongly to measurement temperatures but did not differ between plants from the two growth temperatures. Furthermore, modelling showed that ϕ increased with measurement temperatures for both cold‐grown and warm‐grown plants, but was only marginally larger in cold‐grown compared with warm‐grown plants.

    Our results inMiscanthussupport thatgmandgbsare unresponsive to growth temperature and that the CCM is able to acclimate to cold through increased activity of PPDK and RuBisCO.

     
    more » « less
  4. Abstract

    S‐Nitrosothiols (RSNOs) serve as air‐stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron‐transfer, redox‐innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6F5)3coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer‐sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianiontrans‐[LA‐O‐N=N‐O‐LA]2−[LA=B(C6F5)3], which releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO‐B(C6F5)3] radical anion, which is susceptible to N−N coupling prior to loss of RSSR.

     
    more » « less
  5. Abstract

    S‐Nitrosothiols (RSNOs) serve as air‐stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron‐transfer, redox‐innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6F5)3coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer‐sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianiontrans‐[LA‐O‐N=N‐O‐LA]2−[LA=B(C6F5)3], which releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO‐B(C6F5)3] radical anion, which is susceptible to N−N coupling prior to loss of RSSR.

     
    more » « less