skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: A unified view of graph regularity via matrix decompositions
Abstract

We give a unified proof of algorithmic weak and Szemerédi regularity lemmas for several well‐studied classes of sparse graphs, for which only weak regularity lemmas were previously known. These include core‐dense graphs, low threshold rank graphs, and (a version of)upper regular graphs. More precisely, we definecut pseudorandom graphs, we prove our regularity lemmas for these graphs, and then we show that cut pseudorandomness captures all of the above graph classes as special cases. The core of our approach is an abstracted matrix decomposition, which can be computed by a simple algorithm by Charikar. Using work of Oveis Gharan and Trevisan, it also implies new PTASes for MAX‐CUT, MAX‐BISECTION, MIN‐BISECTION for a significantly expanded class of input graphs. (It is NP Hard to get PTASes for these graphs in general.)

 
more » « less
PAR ID:
10304580
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
61
Issue:
1
ISSN:
1042-9832
Format(s):
Medium: X Size: p. 62-83
Size(s):
p. 62-83
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Given a graph of degree over vertices, we consider the problem of computing a near maximum cut or a near minimum bisection in polynomial time. For graphs of girth , we develop a local message passing algorithm whose complexity is , and that achieves near optimal cut values among all ‐local algorithms. Focusing on max‐cut, the algorithm constructs a cut of value , where is the value of the Parisi formula from spin glass theory, and (subscripts indicate the asymptotic variables). Our result generalizes to locally treelike graphs, that is, graphs whose girth becomes after removing a small fraction of vertices. Earlier work established that, for random ‐regular graphs, the typical max‐cut value is . Therefore our algorithm is nearly optimal on such graphs. An immediate corollary of this result is that random regular graphs have nearly minimum max‐cut, and nearly maximum min‐bisection among all regular locally treelike graphs. This can be viewed as a combinatorial version of the near‐Ramanujan property of random regular graphs.

     
    more » « less
  2. Abstract

    Consider the upper tail probability that the homomorphism count of a fixed graphHwithin a large sparse random graphGnexceeds its expected value by a fixed factor. Going beyond the Erdős–Rényi model, we establish here explicit, sharp upper tail decay rates for sparse randomdn‐regular graphs (providedHhas a regular 2‐core), and for sparse uniform random graphs. We further deal with joint upper tail probabilities for homomorphism counts of multiple graphs(extending the known results for), and for inhomogeneous graph ensembles (such as the stochastic block model), we bound the upper tail probability by a variational problem analogous to the one that determines its decay rate in the case of sparse Erdős–Rényi graphs.

     
    more » « less
  3. Advancing the sparse regularity method, we prove one‐sided and two‐sided regularity inheritance lemmas for subgraphs of bijumbled graphs, improving on results of Conlon, Fox, and Zhao. These inheritance lemmas also imply improvedH‐counting lemmas for subgraphs of bijumbled graphs, for some H.

     
    more » « less
  4. Efficient algorithms for approximate counting and sampling in spin systems typically apply in the so‐called high‐temperature regime, where the interaction between neighboring spins is “weak.” Instead, recent work of Jenssen, Keevash, and Perkins yields polynomial‐time algorithms in the low‐temperature regime on bounded‐degree (bipartite) expander graphs using polymer models and the cluster expansion. In order to speed up these algorithms (so the exponent in the run time does not depend on the degree bound) we present a Markov chain for polymer models and show that it is rapidly mixing under exponential decay of polymer weights. This yields, for example, an‐time sampling algorithm for the low‐temperature ferromagnetic Potts model on bounded‐degree expander graphs. Combining our results for the hard‐core and Potts models with Markov chain comparison tools, we obtain polynomial mixing time for Glauber dynamics restricted to appropriate portions of the state space.

     
    more » « less
  5. Abstract

    In this paper we provide an algorithm that generates a graph with given degree sequence uniformly at random. Provided that, whereis the maximal degree andmis the number of edges, the algorithm runs in expected timeO(m). Our algorithm significantly improves the previously most efficient uniform sampler, which runs in expected timefor the same family of degree sequences. Our method uses a novel ingredient which progressively relaxes restrictions on an object being generated uniformly at random, and we use this to give fast algorithms for uniform sampling of graphs with other degree sequences as well. Using the same method, we also obtain algorithms with expected run time which is (i) linear for power‐law degree sequences in cases where the previous best wasO(n4.081), and (ii)O(nd + d4) ford‐regular graphs when, where the previous best wasO(nd3).

     
    more » « less