skip to main content

Title: Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics
Abstract

We explore the prospects and benefits of combining the techniques of cavity optomechanics with efforts to image spins using magnetic resonance force microscopy (MRFM). In particular, we focus on a common mechanical resonator used in cavity optomechanics—high-stress stoichiometric silicon nitride (Si3N4) membranes. We present experimental work with a ‘trampoline’ membrane resonator that has a quality factor above 106and an order of magnitude lower mass than a comparable standard membrane resonators. Such high-stress resonators are on a trajectory to reach 0.1aN/Hzforce sensitivities at MHz frequencies by using techniques such as soft clamping and phononic-crystal control of acoustic radiation in combination with cryogenic cooling. We present a demonstration of force-detected electron spin resonance of an ensemble at room temperature using the trampoline resonators functionalized with a magnetic grain. We discuss prospects for combining such a resonator with an integrated Fabry–Perot cavity readout at cryogenic temperatures, and provide ideas for future impacts of membrane cavity optomechanical devices on MRFM of nuclear spins.

Authors:
; ; ; ; ; ;
Award ID(s):
1734006
Publication Date:
NSF-PAR ID:
10304583
Journal Name:
New Journal of Physics
Volume:
21
Issue:
4
Page Range or eLocation-ID:
Article No. 043049
ISSN:
1367-2630
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$Δkα, for all momentakon the Fermi surface of every bandα. While there are a variety of techniques for determining$$|{\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha |$$Δkα, no general method existed to measure the signed values of$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$Δkα. Recently, however, a technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns, centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting allk-space regions where$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$Δkαhas the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured, is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$Δkαit generates to the$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$Δkαdetermined from single-atom scattering in FeSe where s±energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for$${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$Δkαof opposite sign.

  2. Abstract

    Stochastic networks for the clock were identified by ensemble methods using genetic algorithms that captured the amplitude and period variation in single cell oscillators ofNeurosporacrassa. The genetic algorithms were at least an order of magnitude faster than ensemble methods using parallel tempering and appeared to provide a globally optimum solution from a random start in the initial guess of model parameters (i.e., rate constants and initial counts of molecules in a cell). The resulting goodness of fit$${x}^{2}$$x2was roughly halved versus solutions produced by ensemble methods using parallel tempering, and the resulting$${x}^{2}$$x2per data point was only$${\chi }^{2}/n$$χ2/n= 2,708.05/953 = 2.84. The fitted model ensemble was robust to variation in proxies for “cell size”. The fitted neutral models without cellular communication between single cells isolated by microfluidics provided evidence for onlyoneStochastic Resonance at one common level of stochastic intracellular noise across days from 6 to 36 h of light/dark (L/D) or in a D/D experiment. When the light-driven phase synchronization was strong as measured by the Kuramoto (K), there was degradation in the single cell oscillations away from the stochastic resonance. The rate constants for the stochastic clock network are consistent with those determined on a macroscopic scale of 107cells.

  3. Abstract

    We construct, for the first time, the time-domain gravitational wave strain waveform from the collapse of a strongly gravitating Abelian Higgs cosmic string loop in full general relativity. We show that the strain exhibits a large memory effect during merger, ending with a burst and the characteristic ringdown as a black hole is formed. Furthermore, we investigate the waveform and energy emitted as a function of string width, loop radius and string tension. We find that the mass normalized gravitational wave energy displays a strong dependence on the inverse of the string tensionEGW/M0∝ 1/, withEGW/M0O(1)%at the percent level, for the regime where≳ 10−3. Conversely, we show that the efficiency is only weakly dependent on the initial string width and initial loop radii. Using these results, we argue that gravitational wave production is dominated by kinematical instead of geometrical considerations.

  4. Abstract

    Efficient conversion of methane to value-added products such as olefins and aromatics has been in pursuit for the past few decades. The demand has increased further due to the recent discoveries of shale gas reserves. Oxidative and non-oxidative coupling of methane (OCM and NOCM) have been actively researched, although catalysts with commercially viable conversion rates are not yet available. Recently,$${{{{{{{\mathrm{Sr}}}}}}}}_2Fe_{1.5 + 0.075}Mo_{0.5}O_{6 - \delta }$$Sr2Fe1.5+0.075Mo0.5O6δ(SFMO-075Fe) has been reported to activate methane in an electrochemical OCM (EC-OCM) set up with a C2 selectivity of 82.2%1. However, alkaline earth metal-based materials are known to suffer chemical instability in carbon-rich environments. Hence, here we evaluated the chemical stability of SFMO in carbon-rich conditions with varying oxygen concentrations at temperatures relevant for EC-OCM. SFMO-075Fe showed good methane activation properties especially at low overpotentials but suffered poor chemical stability as observed via thermogravimetric, powder XRD, and XPS measurements where SrCO3was observed to be a major decomposition product along with SrMoO3and MoC. Nevertheless, our study demonstrates that electrochemical methods could be used to selectively activate methane towards partial oxidation products such as ethylene at low overpotentials while higher applied biases result in the complete oxidation of methane to carbon dioxide and water.

  5. Abstract

    We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$cm2V-1s-1), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of anin-planeelectric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from$$\lambda =3$$λ=3to 12$$\upmu$$μm by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$11\times 10^3$$11×103W/$$\hbox {m}^2$$m2at$$T=2000$$T=2000K for a bias voltage of$$V=23$$V=23V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$\upmu$$μm and 150$$\upmu$$μm, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$12^\circ$$12and$$80^\circ$$80by tuning the Fermi energy between$$E_F=1.0$$EF=1.0eV and$$E_F=0.25$$EF=0.25eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.

    « less