skip to main content


Title: Indian Ocean Dipole leads to Atlantic Niño
Abstract

Atlantic Niño is the Atlantic equivalent of El Niño-Southern Oscillation (ENSO), and it has prominent impacts on regional and global climate. Existing studies suggest that the Atlantic Niño may arise from local atmosphere-ocean interaction and is sometimes triggered by the Atlantic Meridional Mode (AMM), with overall weak ENSO contribution. By analyzing observational datasets and performing numerical model experiments, here we show that the Atlantic Niño can be induced by the Indian Ocean Dipole (IOD). We find that the enhanced rainfall in the western tropical Indian Ocean during positive IOD weakens the easterly trade winds over the tropical Atlantic, causing warm anomalies in the central and eastern equatorial Atlantic basin and therefore triggering the Atlantic Niño. Our finding suggests that the cross-basin impact from the tropical Indian Ocean plays a more important role in affecting interannual climate variability than previously thought.

 
more » « less
Award ID(s):
1935279
NSF-PAR ID:
10304638
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-scale modes of climate variability can force widespread crop yield anomalies and are therefore often presented as a risk to food security. We quantify how modes of climate variability contribute to crop production variance. We find that the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), tropical Atlantic variability (TAV), and the North Atlantic Oscillation (NAO) together account for 18, 7, and 6% of globally aggregated maize, soybean, and wheat production variability, respectively. The lower fractions of global-scale soybean and wheat production variability result from substantial but offsetting climate-forced production anomalies. All climate modes are important in at least one region studied. In 1983, ENSO, the only mode capable of forcing globally synchronous crop failures, was responsible for the largest synchronous crop failure in the modern historical record. Our results provide the basis for monitoring, and potentially predicting, simultaneous crop failures. 
    more » « less
  2. Abstract

    Volcanic eruptions can have significant climate impacts and serve as useful natural experiments for better understanding the effects of abrupt, externally forced climate change. Here, we investigate the Indian Ocean Dipole's (IOD) response to the largest tropical volcanic eruptions of the last millennium. Post‐eruption composites show a strong negative IOD developing in the eruption year, and a positive IOD the following year. The IOD and El Niño‐Southern Oscillation (ENSO) show a long‐term damped oscillatory response that can take up to 8 years to return to pre‐eruptive baselines. Moreover, the Interdecadal Pacific Oscillation (IPO) phase at the time of eruption controls the IOD response to intense eruptions, with negative (positive) IPO phasing favoring more negative (positive) IOD values via modulation of the background state of the eastern Indian Ocean thermocline depth. These results have important implications for climate risk in low‐likelihood, high‐impact scenarios, particularly in vulnerable communities unprepared for IOD and ENSO extremes.

     
    more » « less
  3. Abstract

    Indian Ocean meridional heat transport (MHTIO) drives climate and ecosystem impacts, through changes to ocean temperature. Improved understanding of natural variability in tropical and subtropical MHTIOis needed to contextualize observations and future projections. Previous studies suggest that El Niño‐Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can drive variability in MHTIO. However, it is unclear whether internally generated IOD can drive variability in MHTIO, or if the apparent relationship between IOD and MHTIOarises because both are modulated by ENSO. Here, we use a model experiment which dynamically removes ENSO to determine the role of internally forced IOD on MHTIO. We find that IOD is not linked to anomalies in MHTIO. Nevertheless, internal atmospheric variability drives significant MHTIOvariability. There is little evidence for decadal or multidecadal variability in MHTIO, suggesting this may be a region where an anthropogenic trend rises above the level of internal variability sooner.

     
    more » « less
  4. Abstract Understanding the impact of the Indian Ocean Dipole (IOD) on El Niño-Southern Oscillation (ENSO) is important for climate prediction. By analyzing observational data and performing Indian and Pacific Ocean pacemaker experiments using a state-of-the-art climate model, we find that a positive IOD (pIOD) can favor both cold and warm sea surface temperature anomalies (SSTA) in the tropical Pacific, in contrast to the previously identified pIOD-El Niño connection. The diverse impacts of the pIOD on ENSO are related to SSTA in the Seychelles-Chagos thermocline ridge (SCTR; 60°E-85°E and 7°S-15°S) as part of the warm pole of the pIOD. Specifically, a pIOD with SCTR warming can cause warm SSTA in the southeast Indian Ocean, which induces La Niña-like conditions in the tropical Pacific through interbasin interaction processes associated with a recently identified climate phenomenon dubbed the “Warm Pool Dipole”. This study identifies a new pIOD-ENSO relationship and examines the associated mechanisms. 
    more » « less
  5. Abstract

    We develop a space‐time Bayesian hierarchical modeling (BHM) framework for two flood risk attributes—seasonal daily maximum flow and the number of events that exceed a threshold during a season (NEETM)—at a suite of gauge locations on a river network. The model uses generalized extreme value (GEV) and Poisson distributions as marginals for these flood attributes with non‐stationary parameters. The rate parameters of the Poisson distribution and location, scale, and shape parameters of the GEV are modeled as linear functions of suitable covariates. Gaussian copulas are applied to capture the spatial dependence. The best covariates are selected using the Watanabe‐Akaike information criterion (WAIC). The modeling framework results in the posterior distribution of the flood attributes at all the gauges and various lead times. We demonstrate the utility of this modeling framework to forecast the flood risk attributes during the summer peak monsoon season (July‐August) at five gauges in the Narmada River basin (NRB) of West‐Central India for several lead times (0–3 months). As potential covariates, we consider climate indices such as El Niño–Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Pacific Warm Pool Region (PWPR) from antecedent seasons, which have shown strong teleconnections with the Indian monsoon. We also include new indices related to the East Pacific and West Indian Ocean regions depending on the lead times. We show useful long lead skill from this modeling approach which has a strong potential to enable robust risk‐based flood mitigation and adaptation strategies 3 months before flood occurrences.

     
    more » « less